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Balancing on a Rolling Contact

Federico Allione!2, Roy Featherstone3, Patrick M. Wensing4, and Darwin Caldwell!

Abstract—This paper presents a controller for robots that
balance in a vertical plane on a rolling contact on a flat horizontal
surface. It is an extension of Featherstone’s balance controller
to the case of robots that balance on rounded feet or wheels.
Simulation results demonstrate the ability of the new controller
to balance an inverted double pendulum on a rolling contact
and to balance a Segway-like wheeled robot and make it follow
a motion command signal. Experimental validation is provided
on an underactuated inverted double pendulum robot.

Index Terms—Body Balancing, Dynamics, Motion Control.

I. INTRODUCTION

HIS paper is part of a larger project called Skippy [1], [2],
[3], [4], which aims to demonstrate high performance in
physical activities such as hopping and balancing. This work
presents an extension to Featherstone’s controller for robots
that balance on a point in a vertical plane [5]. It consists of re-
placing the point-foot assumption in Featherstone’s controller
with a circular-foot assumption so that the new controller can
balance robots that move on a rolling contact. The significance
of this work is that it provides a single control law that is
applicable to any robot that balances in a vertical plane on a
point, a rounded foot or wheels. The extension is compatible
with the technique in [6] to combine balancing with absolute
motion, which means that it can support loco-manipulation
tasks involving balancing on wheels. A further contribution
of this paper is that it presents experimental results in which
the new controller balances the robot shown in Fig. 1, thereby
demonstrating that it works in practice as well as in theory.
The new controller is described here for the case of a rolling
inverted double pendulum, which includes Segway-like robots
and other similar wheeled mobile robots as a special case. The
procedure for adapting the controller to work on a general
planar robot is the same as that described in [5, §6], and is
therefore not repeated here.
The rest of this paper is organised as follows. First, Sec-
tion II presents a review of the relevant existing literature on
robotic balancing. Then Section III describes the robot model
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Fig. 1. Balancing machine used for the experiments. On the left, the robot is in
a resting position, not operating. In the central picture, it is actively balancing
with the upper link upright. In the right picture, it is actively balancing with
the upper link with an angle of 7/2 with respect to the lower body.

used in this paper, which is an inverted double pendulum in
which the part of the robot that makes contact with the ground
is circular. Section IV demonstrates the need for a rolling-
contact extension to [5] by showing the tracking error that
results from making a point-foot assumption when the actual
foot is round. Then Section V presents the extended controller,
and Section VI proves its effectiveness in simulation. Sec-
tion VII explains why the tracking performance decreases as
the radius of the rolling contact increases. Then Section VIII
shows the results of physical experiments; and Section IX
demonstrates the effectiveness of the controller on Segway-
like robots. An accompanying video presents these last two
results.

II. BACKGROUND

The most well-known balancing machines, such as
Cubli [7], Pendubot [8], or Acrobot [9], balance on fixed single
contact points—typically a shaft in the case of Pendubot and
Acrobot, or a cube edge in Cubli—and are not designed to
move while balancing in space (although Cubli can ”walk” by
combining consecutive balancing and controlled falling).

Mobile legged robots, such as most quadruped robots,
typically have ball feet (e.g., HyQ [10], Unitree Gol [11],
Spot [12], MIT Mini Cheetah [13]). While these feet are small
relative to the overall size of the robot and can be a good
approximation of point feet, these robots are not designed to
balance on two feet. It has been shown that the balance con-
troller proposed in [5] can be applied to real quadrupeds such
as HyQ [14]. However, balancing proved to be challenging,
and the robot was only able to statically balance on two feet
without moving the other joints not involved in balancing.
Another example of balance for quadruped robots can be found
in [15], where the authors balance the MIT Mini Cheetah on
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Fig. 2. Control architecture of the rolling double pendulum.

two feet using a variational-based linearization technique to
solve an unconstrained linear quadratic regulator problem that
considers torso orientation.

Another family of quadruped robots combines wheeled
locomotion on structured terrain with legged locomotion on
unstructured or uneven surfaces. Examples include CEN-
TAURO [16] and TowrISIR [17], the latter showing the same
hydraulic actuation system as HyQ2Max [18]. In this type of
robot, the foot is replaced by actuated wheels, which allows
some robots (e.g., ANYmal with wheels [19]) to balance on
their wheeled hind legs. The authors use a whole-body model
predictive controller to achieve highly dynamic motions, and
in [20], they use reinforcement learning techniques to make the
robot balance on its wheeled hind legs and move in space. In
this way, the robot behaves like an inverted pendulum, similar
to the famous Segway [21], which has been the objective
of numerous control strategies such as the linear-quadratic
regulator [22], [23], intrinsic geometric proportional-integral-
derivative (PID) controller [24] or optimal control [25]. The
Ballbot [26] is an example of an inverted pendulum balancing
in 3D, being a stick balancing on a ball. The ball is actuated
using an inverse mouse-ball drive, and the balance controller
consists of two independent PID controllers, one for each of
the vertical planes [27]. In [28], the authors use a sliding-
mode controller with a single-loop control system to track and
balance the Ballbot.

In the examples above that use an explicit balance controller,
it is robot specific, often including the complete robot dynam-
ics in the balance control loop. Featherstone’s controller in-
stead controls only the dynamics of balancing. The advantage
of this approach is that the physics of balancing on a point in a
vertical plane is the same for all robots, so a single control law
serves to balance all such robots. The new balance controller
modifies this control law so that it can balance robots on a
rolling contact as well as a fixed point.

III. ROBOT MODEL

The theory presented in this paper is applicable to general
planar robots that balance on a rolling contact on flat, horizon-
tal ground. However, it will be developed for the special case
of an inverted double pendulum. The extension to the general
case follows the same procedure as described in [5, §6].

TABLE I
MODEL PARAMETERS. CONSIDERING BODY ¢: m IS ITS MASS, ¢z AND ¢y
ARE THE COORDINATES OF ITS CENTRE OF MASS, L IS ITS LENGTH, AND [
IS ITS INERTIA ABOUT ITS CENTRE OF MASS.

Body | m kgl | cx [m] | ¢y [m] | L m] | T [kg m?]
r 0 0 0 T 0

I 1.28 0 0.25-r | 0.28-r | 0.0099

2 0.705 0 0.114 | 03 0.0121

The model we shall use is shown in Fig. 2, and we shall
call it a rolling double pendulum. It consists of an upper link
(Body 2) which is connected to a lower link (Body 1) via
an actuated revolute joint (Joint 2) with the joint variable gs.
The lower link rolls without slipping over a supporting surface
(the ground), which is assumed to be flat and horizontal; so
the model, and therefore also the control system, ignores the
possibility of slipping. Previous work has shown that slipping
does occur in practice, but causes only minor disturbances
to the balance controller [3]. The portion of the lower link
that makes contact with the ground is a circle of radius r.
The lower link may therefore be a rounded foot, as shown in
Fig. 2; but it could also be a wheel, and this will be discussed
in Section IX. The special case » = 0 is allowed, and in this
case, the model simplifies to an inverted double pendulum on
a point foot.

The rolling contact is modelled as a combination of a
revolute joint located at the centre of the circle and a prismatic
joint in the horizontal direction. The former has a joint variable
q1, which is chosen as the independent variable of the rolling
contact, and which is measured from the vertical as shown in
Fig. 2. The latter has a joint variable ¢,, which is a dependent
variable constrained to have the value ¢, = —rq;. A massless
body (Body r) is inserted between these two joints to make a
complete three-link kinematic chain.

Table I presents the numeric values of the kinematic and
inertia parameters of the robot used in the simulation experi-
ment in Section VI, considering a range of radii. The physical
robot used for the physical experiment in Section VIII has
r = 0.03m and its kinematic and inertia parameters are shown
in Table III.

We define ¢ = [¢ q1 ¢2)* to be the vector of all joint
variables, and 7 = [00 73] to be the corresponding vector of
joint force variables. 75 is the torque at the actuated joint. We
also define ¢ = [q1 q2]" to be the vector of independent joint
variables, and u = [0 72| to be the corresponding vector of
joint force variables. The kinematic constraint can be written

q=Gq and u=GTr (1)
where
—r 0
G=|1 0]. 2)
0 1
As G is a constant, we also have
G=Gq  and i=0Gq. 3)
The equation of motion of the three-link chain is
Hi+C=r “)
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Fig. 3. Tracking of position variable g2 for a rolling double pendulum with
r = 2cm. cmd is the desired trajectory, g is the theoretical response, g2 F
is the tracking of the balance controller assuming a fixed contact point, and
g2 R is the tracking of the balance controller assuming a rolling contact point.

where H is the joint-space inertia matrix and C' is the bias
vector containing Coriolis, centrifugal and gravitational terms.
Both H and C can be calculated using standard methods [29].
Applying the kinematic constraint produces the following
equation of motion for the robot:

HeGg+Cg=u 5)
where

He=GYHG and Cg=G'C. (6)

IV. TRACKING ERROR

This section demonstrates the need for a rolling-contact
extension to the balance controller in [5] by showing in
simulation that tracking accuracy declines substantially if a
round foot is approximated with a point foot. The simulation
was performed in Simulink R2020b using the integrator ode45
with relative tolerance set to 10~ and other parameters at their
default values.

The results are shown in Fig. 3. In this graph, ‘cmd’ is the
motion command signal for the actuated joint, and the job of
the balance controller is to make this joint follow the command
signal while simultaneously maintaining the robot’s balance.
The signal ¢; is the theoretical response as explained in [5]. It
is the response that the balance controller is programmed to
produce, so the tracking error is defined to be the difference
between the theoretical and actual response. The two signals
g2 F and g2 R are the actual responses of the point-foot and
round-foot balance controllers, respectively. Although both
controllers do a good job of maintaining the robot’s balance, it
can be seen that the tracking accuracy of the point-foot balance
controller is substantially worse than that of the round-foot
balance controller.

To obtain these results, the simulator models the dynamics
using the parameters in Table I with » = 2cm; the round-
foot controller uses the same parameters; and the point-foot
controller uses the same parameters but with r = 0.

V. NEW BALANCE CONTROLLER

The planar balance controller described in [5] and then
experimentally demonstrated in [30] and [3] assumes the robot
to be balancing on a single fixed point in 2D or a knife edge in

3D. In [30], the robot behaves as a reaction wheel pendulum
whose base is fixed to the ground via a revolute joint, and the
balancing point coincides with the rotation axis of the joint.
In [3], instead, the robot is a double inverted pendulum which
is not fixed to the ground. It has two contact points with the
floor aligned with the upper link’s rotation axis, which mimics
a knife edge contact. In both cases, the controller assumes the
contact point is fixed while the robot balances.

In contrast, the rolling double pendulum’s contact point does
move, and, as the results of Section IV have just shown, it is
important that the balance controller takes this into account.
We therefore proceed to develop an extension of the theory
in [5] to take this movement into account. Let L be the
angular momentum of the whole robot about a fixed point
that coincides with the support point at the current instant.
This definition takes into account the position of the rolling
contact point but not its velocity. We do this in order to ignore
a small-magnitude velocity term that would otherwise appear
in (7) and its derivatives in (8) and (9) below. From elementary
mechanics, L must equal the sum of the moments about the
support point of each external force acting on the robot; but
the only external force with a nonzero moment is gravity, and
so we have

L= —mg(c; — q;) = —mg(cs +7ra1) 0
L=—-mg(éy — ¢) = —mg(éz +7d1) ®)
E = mge - i) = moEtri)  ©)

where m is the mass of the robot and ¢ is the magnitude of
the gravitational acceleration; c,, ¢, and ¢, are the position,
velocity and acceleration in the x direction of the centre of
mass with respect to the reference frame fixed at the origin;
and ¢q;, ¢ and ¢, are the position, velocity and acceleration in
the x direction of the contact point.

As the independent variable g; is an angle, and as the rolling
contact is a rotation about the support point, we can say that
the angular momentum of the constrained robot about the
contact point is

L=p=Hg,q +Hg,g (10)

which follows from a special property of joint-space momen-
tum that is proved in Appendix B of [5].

Following the same line of reasoning as in [5], both L and L
depend linearly on the robot’s velocity, implying that L = 0
and L = 0 is equivalent to ¢; = g, = 0 except in special
circumstances when the robot is physically unable to balance
(see Section VII). Also, L is a constant multiple of (cx+7q1).
Therefore, as shown in [5] and [31], any controller that makes

(1)

will make the robot balance but will not drive the actuated
joint in the desired position.

To allow the robot to track a desired trajectory for the
actuated joint, we need expressions for ¢, and ¢, in terms
of the joint velocity and acceleration variables. This can be
obtained by adding an extra fictitious prismatic joint acting in
the x direction between the joint 1 of the constrained robot

L=0,L=0andL =0
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and the ground. The extra joint is called Joint O to preserve
the numbering of the existing joints. The extra joint does not
move, and therefore does not affect the dynamics. Its purpose
is to increase the number of coefficients in the robot’s equation
of motion, which becomes

HGoo HGOl HG02 0 CGO U
HGIO HGn HG12 q| + CGl =0 (12)
HGZO HGzl HG22 Go CG'2 U2

The variable ug is the component of ground reaction force in
the z direction. As this is the only external force acting on the
robot in this direction, it follows that ug = mc,. The special
property of the joint-space momentum used before to define
p1 = L can be used in this case to define py as the linear
momentum of the whole robot in the z direction, so

Po =méy = Hgy, ¢1 + Hag,Go - (13)
Combining (8) and (13) we get

L= —g(po+mriy) = —g(Heo, +mr)is —gHcpd2 (14)
and combining (12) and (9) we get

—L/g = uo+mri = (Hay, +mr)ii+Hey, 2 +Ca, (15)

So, also'_i.n the case of rolling contact, there is an equation

relating L to the two independent joint accelerations and a pair

of linear equations relating L and L to the two independent
Hg,,

joint velocities
Ly _ Q1
L *g(HG(n + mr) Go| -

To simplify the notation, we introduce a new matrix called
Hp, defined as

Hpg, = {(HG”- +mr) if (4,5) = (1,0) or (¢,7) = (0,1)

HG12

16
—g9Hg,, (16)

Hg,, otherwise .
(17)
Equation (15) becomes
_z’./g:Hqu.l +H302d2+CG0 (18)
and (16) now reads
{/ _ Hp,, Hp,, Ql ) (19)
L _gHR[Jl _gHRUQ q2
Solving this equation for ¢, gives
G2 =1L +Y>L (20)
where
Hp Hp
Y, = —% Yy = U 21
1 D 9 2 gD ( )
and
D = HROlHR12 - HR11HR02 . (22)

The obtained equations are the same as those described in [5]
with Hp in place of the original inertia matrix.

The main idea of the control strategy in [5] is to close a
control loop around the plant shown in Fig. 4, which describes
the exact dynamics of balancing for any planar robot that is
balancing on a point that can be modelled as a passive revolute
joint. Observe that the plant implements (20).

L L L q
NV s /s Y, =

Fig. 4. Plant describing the physical process of balancing on a point in a
vertical plane [5]. g, is the variable of the joint used to balance, which in
this case is Joint 2.

The objective of the balance controller is to calculate a value
for L so that g, follows a desired command signal without
losing balance. A suitable control law to accomplish this is

L = kagl + kaL + kL L + ko(ga — ) , (23)

where g, = g5 is the only actuated joint and g, is the input to
the controller, and L, L and L are defined respectively by (10),
(7) and (8).

To determine the feedback gains, the controller first makes
the assumption that Y1 = Y2 = 0, which makes the plant lin-
ear. The feedback gains are then obtained via pole placement

as
kga = —a3 kq = —a2 + agY2/ Y1

(24)
kszal kq:—ao/Yl,
where
ag = A1 A2A3)\4
a1 = —A1A2A3 — A1 A2 4 — A1 A3\ — Aa A3\
1 1A2A3 1A2A4 1A3A4 2A3A4 25)

ag = MAa + A A3+ A As + Aadg + Aoy + A3y
az = —A — A2 — A3 — Ay,

and A\q1,..., Ay are the chosen values of the poles. With these
gains, the closed-loop transfer function is

ap(l — Tc2 52)
4 3 2 u(s) -
s* 4+ aszs°® + a28° + a18 + ag
The quantity 7; appearing in the numerator is the robot’s time
constant of toppling, which is the rate at which the robot starts
to fall when there is no movement in the actuated joint. It is a
physical property of the robot and varies with configuration. In
the experiments below, we chose the poles as follows: \; =
—1/Tc, da = A3 = —1/T7, and Ay = 3, where T is a
constant value equal to T, when ¢ = 0; and (3 is a constant
value which determines the theoretical response of the balance
controller transfer function, as described below.
The input to the controller, g, is computed from the filtered
command signal, g¢, according to

Ga(s) = (26)

Gu = ¢ + a1gr + aagr , 27

where ¢r = AF(QC)’ gr = AF(QC) and gr = AF(QC)’ and gc,
gc and §. are the desired position, velocity and acceleration
of the actuated joint. a; and «o are feedforward gains that
introduce two zeros into the transfer function which cancel
the poles Ay and A3. AF is an acausal filter consisting of
a first-order low-pass filter with time constant 7 that runs
backwards in time from a point sufficiently far in the future
back to the present. Its transfer function in reverse time is
1/(14T¢s), which implies a transfer function in forward time
of 1/(1 — Tts). The physical effect of this filter is to reduce
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the robot’s tracking error by making it lean in anticipation
of the balance disturbances that will be caused by following
the motion command signal ¢.. Although it would be enough
to give the controller 377 s advance notice of the command
signal [5], in all the experiments of this work, we calculated
the complete signal ¢, in advance.

Given the above considerations, setting 7t = T, and
assuming that Y7, Yo are constants [5] and T, = T for
every robot’s configuration, it can be shown that after the
cancellation of poles and zeros, the complete transfer function
from gq. to ¢, of the system shown in Fig. 2 would be

qa(s) = m%(s) .

We take this expression as the theoretical transfer function of
the balance controller, and compare the actual response with
the theoretical one in the experimental results reported below.

The controller’s output must be either an acceleration or
a torque for the actuated joint; that is, either go or To.
Combining (12), (17) and (18) we obtain

(28)

0 HRm HRoz U2 - L/g - CGO
0 HRll HR12 G| = _CG1 (29)
-1 HRzl HR22 g2 _CGZ

which can be solved for ¢> and us; and us = 7 by definition.

VI. SIMULATION EXPERIMENTS

This section reports the results of simulation experiments
where the robot starts in a vertical position (¢, = g1 = g2 = 0)
and then tracks a desired trajectory for joint g5 while balancing
on a rolling contact. The robot model and the initial conditions
are the same as Section IV. The controller has one pole set at
—1/T,; two more poles and the two zeros are set to a constant
value equal to —1/7; and the fourth pole is set at —20rad/s.

The experiment is performed every time with a different
radius of the contact surface. The initially tested radii are 0,
2, 4, 6, 8, and 10 cm. Although the reference trajectory is
the same for all the experiments, the filtered command signal
produced by the acausal filter is specific for each experiment.
This is because the time constant of the acausal filter Ty = T,
and T varies with . Some example values of T are reported
in Table II.

Figure 5 reports the tracking position of joint gs. The best
performance is obtained when the radius is zero, meaning that
the robot is balancing on a fixed point and not on a rolling
contact. The tracking accuracy with » = 0.02m is almost
as good as with » = Om and then gradually decreases as r
increases, until » = 0.08 m. The increment of the radius to r =
0.1m causes a large reduction in the tracking performance.
The reason behind this behaviour is the topic of Section VII.

VII. LINEAR VELOCITY GAIN

A robot’s performance at balancing is limited by its physical
ability to balance, which is a property of the robot itself, not
the control system. Linear velocity gain, as defined in [32],
provides a quantitative measure of a robot’s physical ability to
balance. It is defined as the ratio of the change in the horizontal

2 | |
<
g
=0 - us
g / 7
B oqr B
g N/
2 emd r=0 r = 0.02 r = 0.04 7
3 r = 0.06 r=0.08 r=20.1

0 2 4 6 8 10 12 14 16
time (s]

Fig. 5. Tracking position for joint g2 with varying radius [m]
0.02F ——Fitting curve i
® Measured points
~
A
T -0.02} ]
]
0.04 ! ' ; '
0 0.05 0.1 0.15 0.2 0.25
radius [m]

Fig. 6. Velocity gain with the robot in vertical position (¢: = g1 = g2 = 0),
where G, = —0.207r 4+ 0.0218

velocity of the CoM to the change in velocity of the joint used
to balance the robot when both changes are caused by an
impulse at that joint. For the robot used in these experiments,
the velocity gain is
Aéy
YA
where D and Hp,, are respectively described in (22) and (17),
and m is the total mass of the robot. A robot’s physical
ability to balance is proportional to |G|, and it is physically
impossible for a robot to balance in any configuration where
G, = 0 because an impulse at the actuated joint has no effect
on the horizontal motion of the centre of mass. Note that
Gy #0 < D # 0,s0 D # 0 is guaranteed in every
configuration in which the robot is physically able to balance.
The performance deterioration shown in Section VI is
directly related to the reduction of the magnitude of the linear
velocity gain G, with increasing radius. Figure 6 and Table II
clearly show a negative linear relationship between the velocity
gain and the radius of the rolling contact. With a rolling double
pendulum with dynamic parameters described in Table 1, it is
possible to calculate the velocity gain as

-D
= — (30)
7TL]¥R11

G

G, = —0.207r 4 0.0218 31

when the robot is in a vertical position, ¢, = ¢; = g2 = 0. As
the radius increases, the velocity gain decreases, reducing the
robot’s physical ability to balance. A radius of 0.1055 m makes
the velocity gain equal to zero, making the robot physically
unable to balance.

Figure 6 shows that the linear relation between the radius
and the velocity gain continues and becomes negative with
increasing radius. The change of sign implies a reversal in the
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TABLE II
VELOCITY GAIN Gy AND TOPPLING TIME CONSTANT T: WITH THE ROBOT IN VERTICAL POSITION ACCORDING TO THE RADIUS VALUE r.
r [m] | O 0.02 0.04 0.06 0.08 0.10 0.20 0.225 0.25
Gy[m] | 0.0218 | 0.0177 | 0.0135 | 0.0094 | 0.0053 | 0.0011 | -0.0196 | -0.0247 | -0.0299
T7F [s] | 0.1899 | 0.1965 | 0.2040 | 0.2123 | 0.2216 | 0.2324 | 0.3277 | 0.3777 | 0.4609
0.1 T T T " T T T T T T T
emd —q, 1= 0.02 —qp, T = 0'2‘ ol cmd ——r = 0.2 r=0.225 r=0.25]]
= 0.05f 7 =l
g o g
20-0.05 ~
-0.1 L L L L L L L 2 L L L L L L L L
3.6 3.8 4 4.2 4.4 4.6 4.8 5 0 2 4 6 8 10 12 14 16
time [s] time (s]
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balancing action. This effect can be observed in Fig. 7, which
shows the robot leaning in anticipation of the first ramp. When
r = 0.02m it leans to the left (positive ¢;) and when r = 0.2m
it leans to the right (negative ¢;). The three red dots in the
bottom right corner of Fig. 6 represent three radii of the rolling
contact that makes the robot controllable even with a negative
linear velocity gain. The tested radii are 20, 22.5, and 25 cm,
with the last value implying that the lower link’s centre of
mass coincides with the circle’s centre. The simulation results
are shown in Fig. 8. The tracking is accurate, with the accuracy
increasing with the size of the radius. Such behaviour is due
to the increase in the magnitude of the velocity gain, as shown
in Table II. These results show that it is the decrease in the
robot’s physical ability to balance, rather than some defect in
the balance controller, that accounts for the decline in tracking
accuracy observed in Fig. 5.

It is worth noting that the velocity gain of the robot changes
with the configuration of the robot. This means it is not
constant throughout the experiment, as shown in Fig. 9. A
robot with a rolling contact with a radius between 10 and
20 cm is physically unable to track the desired trajectory
because the velocity gain will cross the zero line while the
robot is moving. A radius > 20cm allows the robot to safely
track the desired trajectory.

VIII. PHYSICAL EXPERIMENT

This section describes an experiment in which the tracking
performance of the general implementation of the balancing

Fig. 9. Robot velocity gain during the experiment with varying radius [m].

controller [5], [3] is compared with the new rolling-contact
balance controller on a real robot. The obtained results are
presented together with the simulated and theoretical results.

A. Robot Description

The robot used for this experiment is shown in Fig. 1. It
is essentially the same as the robot described in [3, §III],
the only significant difference being that the relatively sharp
pointed feet have been replaced with cylinders of radius
0.03m. The robot measures ¢g; with an IMU [33] and ¢o
with an absolute position encoder; the actuated joint is driven
by a Maxon motor and a friction drive (capstan and wheel),
which has zero backlash. The robot is battery-operated, and
all computation takes place on board. The robot’s kinematic
and inertia parameters are reported in Table III.

B. Experiment Description

The experiment starts with the robot in a resting position,
with the upper link touching the ground. Then the robot
balances itself in less than 2.5 seconds and starts tracking the
same trajectory as Sections IV and VI. The trajectory consists
of ramps and a sine wave with an amplitude of 7/2. The
controller has its poles and zeros set with the same strategy
used in simulation but with different values of T} = 0.192s
and \y = —14rad/s. The time constant of the acausal filter
issetto Ty = T7.
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Fig. 10. Tracking position for joint g2. cmd is the desired trajectory, q; is
the theoretical response, gs is the simulated output of the rolling balance
controller, g2 F is the tracking of the balance controller assuming a fixed
contact point, and g2 R is the tracking of the balance controller assuming a
rolling contact point. g2 F and g2 R refer to the physical experiment.
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Fig. 11. Position of the centre of mass throughout the experiment. ¢ F is
the CoM position when the balance controller assumes a fixed contact point,
and ¢z R is when the balance controller assumes a rolling contact point.

C. Experimental Results

The experimental results are shown in Fig. 10. The first
experiment tests the controller used in [3] with the new
mechanical setup. The robot can barely balance itself, and
it is completely unable to track the desired trajectory. Then
the new controller is tested, and now not only can the robot
balance itself in less than 2.5 seconds, but it can also accurately
track the desired trajectory while balancing (see accompanying
video). The reason for this behaviour can be found in Fig. 11,
where it can be seen that while balancing with the new
controller, the position of the centre of mass is very close
to the value of ¢.. In this situation, the centre of mass is
aligned with the contact point; hence the robot is balanced.
The old balance controller, though, is unaware that the contact
point with the ground has moved and tries to move the
centre of mass to be above where it thinks that the contact
point is. As a consequence of this motion, the robot starts
oscillating, making this controller unusable for balancing this
type of robot. Figure 11 also shows the effect of the leaning
in anticipation caused by the acausal filter, with the robot
leaning in the opposite direction to compensate for future
disturbance introduced by the trajectory tracking. For example,
before the first ramp at ¢ = 5s, the centre of mass of the
robot controlled with the rolling balance controller, ¢, R line
of Fig. 11, moves in the opposite direction before the ramp
begins. Similar movements can be seen just before the second
and third ramps.

q2 ‘qfls

-~ z

-Qr

Fig. 12. Schematic model of the robot balancing on a wheel

IX. BALANCING ON A WHEEL

The results obtained in Section VI suggest that this con-
troller can also be used to balance a stick on a wheel, as shown
in Fig. 12. With respect to the dynamic parameters described in
Table I, only some minor changes to the definition of Body 1
have to be made, which are L; = 0 and ¢, = 0. The new
robot is essentially made of a wheel of radius r = 0.2m
and a stick connected to the centre of the wheel by means
of an actuated revolute joint. The wheel can rotate without
slipping; hence the robot can move horizontally in the plane.
The modelling technique used in Section VI is also valid for
this robot. Referring to Fig. 12, ¢, is the rolling distance, ¢;
is the angle of the coordinate frame of the wheel z; — ¥
with respect to the vertical, and ¢ is the angle of the actuated
joint with respect to the coordinate frame of the wheel. The
coordinate frame x; — y; is located at the centre of the wheel,
and it rotates with the wheel itself; the axis y; is aligned with
the vertical when ¢; = 0.

The system can track the desired trajectory for joint 2 very
efficiently due to the high velocity gain G, = —0.031. In
a balanced configuration, ¢; + g2 = 0, so by making ¢
track a desired trajectory, q; is essentially equal to —gs. As
a consequence, the robot rolls significantly while tracking the
desired trajectory (which is the same as Section VI) as shown
in Fig. 13 and in the accompanying video.

The controller can be adapted to make the robot travel at a
commanded velocity. All that needs to be done is to set the
position command for g2 equal to the integral of 1/r times
the velocity command. This works because the stick will be
upright when the robot is travelling at a constant velocity, so
41 = —q2, hence ¢, = rgs. The example reported in Fig. 14
shows how the stick’s lean angle (q; + ¢2) varies while the
robot travels at a commanded velocity.

X. CONCLUSION

This paper expands Featherstone’s 2D balance controller
by replacing the point-foot assumption with a circular-foot
assumption. This extension increases the generality of the
controller so that it can be applied to legged robots with round
feet and to robots that balance and travel on a pair of wheels
(i.e., Segway-like robots). The paper first demonstrated the
need for such an extension, then developed the new theory,
and then demonstrated the effectiveness of the new controller
both in simulation and on a real robot. Furthermore, this work
showed how modifying a robot’s physical parameters, such
as the radius of the foot, affects its ability to balance. Future
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13. Tracking position for joint g2 with radius of the wheel » = 0.2 m.

cmd is the desired trajectory, g; is the theoretical response, g2 is the tracking
of the balance controller, g and g1 are the other two joints positions.
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14. Tracking velocity for joint gr. cmd is the desired travelling velocity,

¢r is the travelling velocity, and (g1 + ¢2) is the stick lean angle.

directions include: balancing on a slope, controlling absolute
robot motions while balancing, and balancing in 3D.
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