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Abstract

This paper presents a new model of the dynamics of a general planar robot

balancing on a point in the plane, in which the essential parameters of the robot’s

balancing behaviour are reduced to just two numbers, both of which are simple

functions of basic physical properties of the robot mechanism. A third number de-

scribes the effect of other movements on the robot’s balance. This model gives rise

to a simple preview balance controller consisting of a four-term control law with

easily calculated gains and a reverse-time low-pass filter acting on a preview of the

command signal. The filter makes the robot lean in anticipation of future move-

ments. Simulation results are presented showing the balance controller achieving

excellent tracking of large fast motion commands while simultaneously maintaining

the robot’s balance and accurately rejecting disturbances caused by other motions

being performed by the robot. The controller is also robust to effects such as actu-

ator saturation and sensor noise.

Keywords: legged robots, planar robots, balance control, preview control, acausal

filter, non-minimum-phase behaviour, physics of balancing, leaning in anticipation,

angular momentum.

1 Introduction

This paper considers the problem of a general planar robot that is actively balancing on a
single point of support while simultaneously executing motion commands. In particular,
the same motion freedom that is used for balancing is also subject to motion commands.
The robot is therefore overloaded in the sense that the number of task variables to be con-
trolled exceeds the number of actuator variables. Such overloading is physically possible,
and is routinely exhibited by circus performers and the like, as well as by inverted pen-
dulum robots (Hauser and Murray, 1990) and wheeled robots that use the same motion
freedom both for balancing and for transport (Double Robotics, 2015; Segway, 2015).

The first contribution of this paper is a new model of the plant (i.e., the robot mech-
anism) in which the essential features of the robot’s balancing behaviour have been re-
duced to just two numbers. A third number summarizes the disturbance caused by other
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movements being performed by the robot. The advantages of this model are: (1) it is
exceptionally simple; (2) it applies to general planar robots, including robots with kine-
matic loops; (3) it takes into account the effect of other movements of the robot (i.e.,
movements for accomplishing tasks other than balancing); (4) the model parameters have
a clear physical meaning that is easy to understand; (5) they can be computed efficiently
using standard dynamics algorithms; and (6) a high-performance balance controller is
easily obtained by a simple feedback control law acting directly on the new plant model.

The second contribution is the new balance controller derived from the plant model.
It resembles the one presented in Azad (2014); Azad and Featherstone (2016), and shares
its robustness to effects such as torque limits, sensor noise and time delays. However, it
is simpler, and it applies to general planar robots. Compared with the typical approach
to balance control in the control theory literature, as exemplified by Grizzle et al. (2005);
Miyashita et al. (2006); Yonemura and Yamakita (2004), the new controller is a four-term
controller using full state feedback, rather than a three-term output-zeroing controller
with a one-dimensional zero dynamics. Another difference is that the new controller
requires only the numeric values of the coefficients of a general equation of motion, such
as can be calculated by standard dynamics software, whereas the typical approach is to
start with the symbolic equations of motion of a particular robot. Note that the great
majority of literature in this area is actually on swing-up control (e.g. Spong (1995); Xin
and Kaneda (2007)) which is not considered here.

The third contribution is a simple technique for making the robot lean in anticipation
of future command signals. It consists of a first-order low-pass filter that is interposed
between the command signal and the input to the balance controller. However, this fil-
ter runs backwards in time, starting from a point sufficiently far in the future, so that
its output is a function of present and future command signals. The filter’s time con-
stant matches the robot’s natural rate of toppling, and its immediate effect is to cancel
the robot’s non-minimum-phase behaviour. The result is a large improvement in track-
ing accuracy, as well as a large improvement in the balance controller’s ability to reject
anticipated disturbances caused by the other motions being performed by the robot.

The idea of leaning in anticipation of future movements is not new (Rabbani et al.,
2014). More generally, the idea of employing knowledge about the future in a control
system is known as preview control, and it is already an established technique in robotics
for tasks such as walking pattern generation (Kajita et al., 2003) and improving humanoid
balance (Ibanez et al., 2012). Model predictive control, as described in Wieber (2006) for
example, is also a form of preview control because the optimization problem includes
information about future events; and a robot controlled in this way will exhibit some
degree of leaning in anticipation as a by-product of the optimization process. However,
the idea of making a robot lean in anticipation by means of the low-pass filter described
above appears to be new.

This paper is an extended version of Featherstone (2015b), and much of the material
presented here appeared originally in that paper. The new materials in this paper are:
the technique of leaning in anticipation, the transfer function analysis that leads up to it,
new results demonstrating the performance of the controller when combined with leaning
in anticipation, and an outline of how the plant model and balance controller can be
extended to the problem of balancing in 3D.

The paper is organized as follows. Section 2 compares the proposed new balance
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controller with existing methods in the literature. Then Section 3 describes the new
model of the physical process of balancing for the special case of a planar inverted double
pendulum. Section 4 describes the balance controller and the technique of leaning in an-
ticipation. Then Section 5 presents several simulation results investigating the controller’s
performance, and compares it with some previously published balance control systems.
Then Section 6 extends both the model and the controller to the case of a general planar
mechanism, and presents simulation results for a planar triple pendulum. Finally, Section
7 explains briefly how the ideas in this paper can be extended to the case of a general
robot balancing on a point in 3D.

1.1 A Note on Balancing

As the term ‘balancing’ is used in the robotics literature with two distinct meanings, a
few words of clarification are required. The kind of balancing considered here arises when
a robot balances on a line segment or a point. It is characterized by the presence of a
motion freedom over which the robot has no direct control; namely, the freedom to rotate
about the support. In this circumstance, the robot is underactuated, and every balanced
configuration of the robot is unstable. The task of balancing requires a control system
that controls the unactuated freedom(s) indirectly by manipulating the moment of gravity
about the support.

In contrast, the kind of balancing that has been most extensively studied in the robotics
literature arises when the robot has a polygon of support. In this circumstance, the robot
is equivalent to a fixed-base robot and is effectively fully actuated. However, it does have a
tipping point, and there are constraints on the possible values of the ground reaction force.
A robot with a polygon of support has infinitely many configurations of statically-stable
balance. In any one of these configurations, the robot can balance indefinitely simply
by doing nothing. However, if movement is required then it is necessary to identify
movements that satisfy the constraints on ground reaction force and keep the robot away
from its tipping point. This is typically accomplished using a zero-moment-point (ZMP)
controller, and such controllers generally work by planning a safe movement and then
executing it using a simple trajectory-following controller.

Humanoids are usually designed with large flat feet in order to maximize the size of
their polygons of support. However, even a humanoid would have to balance on a point
or a line if it wanted to stand on a hump, or on tip toes.

2 Comparison with Existing Methods

The usual approach to balance control begins with the closed-form equations of motion
of the robot mechanism. These are a set of symbolic equations that express the force
variables explicitly in terms of the state variables, the acceleration variables and the
kinematic and inertia parameters of the robot. Examples include Eqs. 1 and 2 in Spong
(1995), Eqs. 1 and 2 in Hauser and Murray (1990), Eqs. 1–3 in Yonemura and Yamakita
(2004), Eqs. 1–4 in Xin and Kaneda (2007), Eqs. 1 and 2 in Azad and Featherstone (2016)
and Eqs. 3.1 and 3.2 in Azad (2014). These equations are then manipulated in various
ways in order to arrive at a formula for a feedback control law.
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This is a good approach when the mechanism is simple, but it does not scale well to
more complicated mechanisms, and it does not generalize to closed-loop mechanisms. For
a kinematic tree, the size of the closed-form equations of motion grows with the fourth
power of the number of degrees of freedom; and the problem with kinematic loops is that
only a few special cases have closed-form solutions. If a mechanism contains a kinematic
loop without a closed-form solution then the mechanism as a whole does not have a
closed-form equation of motion. None of the works mentioned above considers closed-
loop mechanisms; and Grizzle et al. (2005) explicitly rules out kinematic loops near the
beginning of the paper.

For these reasons, the new balance controller is developed in a way that requires only
the numeric values of the coefficients of the equation of motion. In particular, if the
equation is written in the form

τ = Hq̈ +C , (1)

where τ and q̈ are vectors of generalized forces and accelerations, respectively, then the
theory behind the new controller assumes knowledge of only the numeric values of the
elements of H and C, not their closed-form expressions. This immediately solves the
kinematic-loop problem because it allows loop-closure constraints to be incorporated nu-
merically into the equation of motion, which is always possible. It also improves the
scalability, because it permits the use of efficient standard algorithms to calculate H and
C. These algorithms have a computational cost that is linear in the number of elements to
be calculated, in the case of a kinematic tree, or at most cubic in the number of open-loop
freedoms, in the case of a closed-loop mechanism (Featherstone, 2008).

A second major difference between the new controller and those described in the
literature is that the new one does not control the robot directly, but instead controls a
new model of the physical process of balancing, treating it as a plant. This new model
is both general and exact, and it encapsulates a surprising new result: the balancing
behaviour of any planar robot mechanism, no matter how complicated, is described by
just two numbers. In effect, the new model extracts the essence of a robot’s balancing
behaviour from the rest of its dynamics, and expresses it in its simplest form. By choosing
to control the behaviour of this model, instead of the original robot, one obtains a simple
controller that is concerned only with balancing behaviour, not the detailed dynamics of
any particular robot. No other balance controller works in this way.

Another difference is that the command signal is passed through an acausal filter
before being fed to the balance controller. The filter is a simple first-order low-pass filter
running backwards in time, as mentioned in the introduction, so that the signal received
by the controller is a function of both the present value of the command signal and near-
future values. The filter is motivated by an analysis of the closed-loop transfer function
of the balancing behaviour model, and its primary purpose is to cancel the zero that is
responsible for the non-minimum-phase behaviour. However, its effect on the robot is to
make it lean in anticipation of future balance disturbances.

This filter greatly improves the tracking ability of the balance controller, and allows it
to perform larger, faster movements without falling over than would have been possible
if the robot had not leaned in anticipation. For example, in some of the results presented
later in this paper, the robot leans almost 0.2 radians in anticipation of movements so
large that they throw the robot 0.4 radians in the opposite direction. The filter also
reduces the response time, as can be seen in Figure 12, and it allows the controller to use

4



higher gains than would have been feasible otherwise, so that it can track those larger,
faster motion commands.

However, it should be understood that balancing is physically a non-minimum-phase
activity, and the robot’s response to unanticipated disturbances, including sensor noise,
will always be a non-minimum-phase response.

The three items above are the most important differences between the new controller
and existing balance controllers described in the literature. Together, they account for
the new controller’s generality, simplicity and performance. However, there are two more
differences worth mentioning.

First, the new controller is designed to be part of a larger control system in which
there exists another controller that is handling other aspects of the robot’s motion. The
only two things that the new controller assumes about this other controller are (1) it has
a preview of the movements that the other controller intends to make, so that it can lean
in anticipation of the balance disturbances that these movements will cause, and (2) the
actual movements made by the other controller accurately follow its intentions. In this
respect, the new controller resembles the one in Ibanez et al. (2012). Most other balance
controllers are designed to be complete control systems by themselves.

The second difference concerns a technical detail in the way the control law works. The
new controller resembles Azad’s controller (Azad, 2014; Azad and Featherstone, 2016) in
that they both use a four-term control law that implements full state feedback. (They
also happen to use the same state variables.) However, several other controllers, such as
those described in Grizzle et al. (2005); Miyashita et al. (2006); Yonemura and Yamakita
(2004), employ a three-term control law that seeks to control a fictitious output that is a
linear combination of the robot’s angular momentum about the support with a quantity
whose derivative is algebraically related to the angular momentum. This is a mathemati-
cally rigorous approach that allows one to make stronger statements about stability than
anything that is claimed here about the new controller. However this approach comes
with a performance penalty that can be seen in Figure 6 of Grizzle et al. (2005). In this
figure, the top two graphs show the fictitious output settling to the command signal in
under 10 seconds; but the bottom left graph shows that the robot’s joint variables take
more than 10 seconds to settle. This effect can be attributed to the zero dynamics of the
system, which are provably stable but nevertheless take some time to settle. For compar-
ison, the settling time of the new controller on a robot of similar dimensions is about 20
times faster.

3 A New Model of Balancing Behaviour

This section describes a new model of the physical process of balancing for the special
case of a planar 2R mechanism (an inverted double pendulum). It is extended to general
planar mechanisms in Section 6, and its extension to 3D is outlined in Section 7. The
new model resembles the idea of a template, as described in Full and Koditschek (1999).
However, there is an important difference: a template typically describes a simplified
mechanical system, whereas the model presented here describes the exact dynamics of
balancing expressed in its simplest form. A good example of the former is the spring-
loaded inverted pendulum template for hopping and running (Blickhan, 1989; Full and
Koditschek, 1999), in which the leg is assumed to be massless. This assumption simplifies

5



Figure 1: Planar 2R robot mechanism representing an inverted double pendulum actuated
at joint 2

the dynamics considerably, but at the expense of ignoring all effects due to the nonzero
mass of a physical leg. In contrast, the model presented here expresses the essence of
balancing behaviour without ignoring any dynamic effect.

3.1 The New Model

Figure 1 shows a planar 2R mechanism representing an inverted double pendulum. Joint
1 is passive and represents the point contact between the foot of the mechanism and a
supporting surface (the ground). It is assumed that the foot neither slips nor loses contact
with the ground. The state variables of this robot are q1, q2, q̇1 and q̇2. The total mass of
the robot is m; the coordinates of its centre of mass (CoM) relative to the support point
are cx and cy; and it is assumed that the support point is stationary, i.e., it is not a rolling
contact. The equation of motion of the robot is

[

H11 H12

H21 H22

] [

q̈1
q̈2

]

+

[

C1

C2

]

=

[

0
τ2

]

, (2)

where Hij are elements of the joint-space inertia matrix, Ci are elements of the bias vector
containing Coriolis, centrifugal and gravitational terms, q̈i are the joint accelerations, and
τ2 is the torque at joint 2. The conditions for the robot to be in a balanced position are:
cx = 0, q̇1 = 0 and q̇2 = 0. The robot is also subject to the position command signal
q2 = qc(t), where qc is an input to the controller.

Any mechanism that balances on a single point has the following special property,
which is central to the activity of balancing: the only force that can exert a moment
about the support point is gravity. If we define L to be the total angular momentum of
the robot about the support point then we find that

L̇ = −mgcx , (3)

where g is the magnitude of gravitational acceleration (a positive number). This equation
implies

L̈ = −mgċx (4)

and ...
L = −mgc̈x . (5)
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We also have
L = p1 = H11q̇1 +H12q̇2 , (6)

which follows from a special property of joint-space momentum that is proved in Appendix
B: if pi is the momentum variable of joint i then, by definition, pi =

∑

j Hij q̇j ; but if
the mechanism is a kinematic tree, or if the mechanism is general but joint i does not
participate in any kinematic loop, then pi is also the component in the direction of motion
of joint i of the total momentum of the subtree beginning at body i. As the whole robot
rotates about joint 1, it follows that p1 is the total angular momentum of the robot about
the support point, hence p1 = L.

Observe that L̇ is simply a constant multiple of cx, and that L and L̈ are both linear
functions of the robot’s velocity, implying that the condition L = L̈ = 0 is equivalent to
q̇1 = q̇2 = 0 (assuming linear independence). So the three conditions for balance can be
written as

L = L̇ = L̈ = 0 . (7)

Thus, any controller that successfully drives L to zero will cause the robot to balance,
but will not necessarily bring q2 to the commanded angle. (This is not a new result—see,
for example, Miyashita et al. (2006, §4).)

We now introduce a fictitious extra joint between joint 1 and the base, which is a
prismatic joint acting in the x direction. To preserve the numbering of the existing joints,
the extra joint is called joint 0. This joint never moves, and therefore never has any effect
on the dynamics of the robot. Its purpose is to increase the number of coefficients in the
equation of motion, which now reads





H00 H01 H02

H10 H11 H12

H20 H21 H22









0
q̈1
q̈2



+





C0

C1

C2



 =





τ0
0
τ2



 . (8)

The position and velocity variables of joint 0 are always zero, and τ0 takes whatever
value is necessary to ensure that q̈0 = 0. The reason for adding this joint is that the
special property of joint-space momentum, which we used earlier to deduce that p1 = L,
also implies that p0 is the linear momentum of the whole robot in the x direction. So
p0 = mċx. With the extra coefficients in Eq. 8 we can write

p0 = H01q̇1 +H02q̇2 = mċx = −L̈/g , (9)

so that we now have a pair of linear equations relating L and L̈ to the two joint velocities:

[

L

L̈

]

=

[

H11 H12

−gH01 −gH02

] [

q̇1
q̇2

]

. (10)

Solving this equation for q̇2 gives

q̇2 = Y1L+ Y2L̈ , (11)

where

Y1(q) =
H01

D
, Y2(q) =

H11

gD
(12)
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Figure 2: New plant model for balancing

and
D = H12H01 −H11H02 . (13)

Clearly, this only works if D 6= 0. The physical significance of D = 0 is explained below.
From a control point of view, a problem also arises if Y1 = 0, and this too is discussed
below.

We now have all the component parts of the new model, which is shown in Figure 2
in the form of a block diagram. The state variables are q2, L, L̇ and L̈, which replace
the original state variables. As will be shown in Section 4, a simple feedback control law
closed around this model, which serves as the plant from the control system’s point of
view, can make q2 follow a commanded trajectory while maintaining the robot’s balance.
To be more accurate, what really happens is that the control law tips the robot slightly
off balance so that the necessary balance recovery movement just happens to make q2
follow the commanded trajectory. Once q2 has reached its final position, the other state
variables settle to zero, thereby satisfying the conditions for balance in Eq. 7.

Observe that the new plant model has only two parameters: the two configuration-
dependent gains Y1 and Y2. These gains are calculated directly from the elements of the
joint-space inertia matrix in Eq. 8, which in turn can be calculated using any standard
method for calculating the joint-space inertia matrix of a robot. Thus, no special code is
needed to calculate the model parameters.

3.2 Physical Meaning of Y1 and Y2

The two gains Y1 and Y2 are related in a simple way to two physical properties of the
mechanism: the natural time constant of toppling and the linear velocity gain (Feath-
erstone, 2015a). The former quantifies the rate at which the robot begins to fall in the
absence of movement of the actuated joint. The latter measures the degree to which
motion of the actuated joint influences the motion of the CoM.

If there is no movement in the actuated joint then the robot behaves as if it were
a single rigid body, and its motion is governed by the equation of motion of a simple
pendulum:

Iθ̈ = mgc(cos(θ0)− cos(θ)) (14)

where I is the rotational inertia of the robot about the support point, c = |c| is the
distance between the CoM and the support point, θ = tan−1(cy/cx) is the angle of the
CoM from the x axis, and the term mgc cos(θ0) is a hypothetical constant torque acting
at the support point, which serves to make θ0 an equilibrium point of the pendulum.
Linearizing this equation about θ0, and defining φ = θ − θ0, results in the following
equation:

Iφ̈ = mgcyφ , (15)
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which has solutions of the form

φ = Aet/Tc +Be−t/Tc (16)

where A and B are constants depending on the initial conditions, and Tc is the natural
time constant of the pendulum, given by

T 2
c =

I

mgcy
. (17)

If cy > 0 then Tc is real and Eq. 16 contains both a rising and a decaying exponential.
This is characteristic of an unstable equilibrium. If cy < 0 then Tc is imaginary and Eq. 16
is a combination of sines and cosines, which is characteristic of a stable equilibrium. But
if cy = 0 then we are at the boundary between stable and unstable equilibrium and Tc

is unbounded. As we are considering the problem of a robot balancing on a supporting
surface, it is reasonable to assume cy > 0.

From the definition of the joint-space inertia matrix (Featherstone, 2008, §6.2) we have
H01 = sT0 I

c
1s1 and H11 = sT1 I

c
1s1, where s0 = [0 1 0]T, s1 = [1 0 0]T and

Ic
1 =





I −mcy mcx
−mcy m 0
mcx 0 m



 (18)

(planar vectors and matrices—see Featherstone (2008, §2.16)). It therefore follows that
H01 = −mcy and H11 = I, implying that

T 2
c =

−H11

gH01

. (19)

On comparing this with Eq. 12 it can be seen that

T 2
c =

−Y2

Y1
. (20)

The linear velocity gain of a robot mechanism, Gv, as defined in Featherstone (2015a),
is the ratio of a change in the horizontal velocity of the CoM to the change in velocity of
the joint (or combination of joints) that is being used to manipulate the CoM. For the
robot in Figure 1 the velocity gain is

Gv =
∆ċx
∆q̇2

, (21)

where both velocity changes are caused by an impulse about joint 2. The value of Gv can
be worked out via the impulsive equation of motion derived from Eq. 8:





ι0
0
ι2



 =





H00 H01 H02

H10 H11 H12

H20 H21 H22









0
∆q̇1
∆q̇2



 , (22)

where ι2 is an arbitrary nonzero impulse. Solving this equation for ι0 gives

ι0 = H01∆q̇1 +H02∆q̇2

=
(

H02 −
H01H12

H11

)

∆q̇2 =
−D

H11
∆q̇2 . (23)
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Figure 3: Alternative version of new plant model for balancing

But ι0 is the ground-reaction impulse in the x direction, which is the step change in
horizontal momentum of the whole robot; so we also have ι0 = m∆ċx, and the velocity
gain is therefore

Gv =
∆ċx
∆q̇2

=
ι0

m∆q̇2
=

−D

mH11
. (24)

The two plant gains can now be written in terms of Tc and Gv as follows:

Y1 =
1

mgT 2
c Gv

, Y2 =
−1

mgGv
, (25)

and another interesting formula for Y1 is

Y1 =
cy
IGv

. (26)

Equation 20 suggests a small modification to the plant model in Figure 2, in which Y2

is replaced with T 2
c as shown in Figure 3. In this version of the model, it can be seen that

everything to the left of Y1 is concerned with the balancing motion of the robot, while
Y1 describes how the balancing motion affects joint 2. It was mentioned earlier that the
balance controller works by tipping the robot slightly off balance, so that the corrective
motion causes q2 to follow the commanded trajectory. The model in Figure 3 makes this
idea a little clearer.

We are now in a position to explain the physical significance of the conditions D 6= 0,
which is required by the plant model, and Y1 6= 0, which is required by the control law in
the next section. D 6= 0 is equivalent to Gv 6= 0, and it is the condition for joint 2 to have
an effect on the horizontal motion of the CoM. If D = 0 in some particular configuration
then it is physically impossible for the robot to balance itself in that configuration. Y1 = 0
occurs when cy = 0, which is on the boundary between unstable and stable equilibrium.
Given that the robot lies above a supporting surface located at y = 0, we may safely
assume that cy > 0, implying Y1 6= 0. A similar analysis appears in Azad (2014); Azad
and Featherstone (2016).

4 The Balance Controller

The new plant model is interesting in its own right, but its usefulness lies in the simplicity
and high performance of the balance controller that is suggested by the model, and the
ease with which the controller can be designed and implemented. This section describes
the controller in stages: first the control law, then an analysis of the transfer function,
which leads to the technique of leaning in anticipation.
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4.1 Control Law

Given the input, output and state variables of the plant in Figure 2, the obvious strategy
to try is full state feedback. Therefore, consider the following four-term control law:

...
L = kddL̈+ kdL̇+ kLL+ kq(q2 − u) , (27)

where the input u is given by

u = qc + α1q̇c + α2q̈c . (28)

kdd, kd, kL and kq are the feedback gains; inputs qc, q̇c and q̈c are the position command
signal for joint 2 and its derivatives; and αi are optional feedforward gains that have a
similar effect to Lc and L̇c in Featherstone (2015b) and Ld in Azad (2014) and Azad and
Featherstone (2016). In the simplest case, αi can be set to zero. Alternatively, nonzero
values can be used to improve the tracking accuracy and/or cancel selected poles in the
transfer function. Equation 28 will be modified in Section 4.3.

When the plant in Figure 2 is subjected to the control law in Eq. 27, the resulting
closed-loop equation of motion is









...
L
L̈

L̇
q̇2









=









kdd kd kL kq
1 0 0 0
0 1 0 0
Y2 0 Y1 0

















L̈

L̇
L
q2









−









kqu
0
0
0









, (29)

and the characteristic equation of the coefficient matrix is

λ4 − kddλ
3 − (kd + kqY2)λ

2 − kLλ− kqY1 = 0 . (30)

At this point we introduce an approximation. The next step is to linearize the dy-
namics about the current configuration. However, instead of an exact linearization, we
shall use an approximate linearization that is obtained by assuming that Y1 and Y2 are
constant. This is equivalent to assuming that ∂Yi/∂L̇ = ∂Yi/∂q2 = 0 in the exact linear
dynamics. Having made this approximation, the roots of Eq. 30 are the poles of the
linearized system.

The simplest way to choose the feedback gains is by pole placement. If λ1, λ2, λ3 and
λ4 are the desired values of the poles, then the corresponding polynomial is

λ4 + a3λ
3 + a2λ

2 + a1λ+ a0 , (31)

where
a0 = λ1λ2λ3λ4

a1 = −λ1λ2λ3 − λ1λ2λ4 − λ1λ3λ4 − λ2λ3λ4

a2 = λ1λ2 + λ1λ3 + λ1λ4 + λ2λ3 + λ2λ4 + λ3λ4

a3 = −λ1 − λ2 − λ3 − λ4 .

(32)

The gains are then obtained by matching the coefficients in Eqs. 30 and 31, resulting in

kdd = −a3 kd = −a2 + a0Y2/Y1

kL = −a1 kq = −a0/Y1 .
(33)
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A suitable choice of poles is discussed below.
For the linearized system to be stable, it is necessary that every pole has a negative

real part. However, it can be seen from Eq. 30 that if Y1 = 0 then λ = 0 is always a root
of the characteristic equation regardless of the choice of gains. So we require Y1 6= 0 as a
condition of stability.

The signal qc specifies the trajectory that q2 is being commanded to follow. It can be
arbitrary in the sense of not being required to have any particular algebraic form (such as
the special trajectories found by Berkemeier and Fearing (1999)). However, it is always
possible to find a signal that will cause the robot to fall over. Thus, even if every pole is
stable, a sufficiently bad input can always make the robot fall. (An example is given in
Section 5.)

The value computed by Eq. 27 is
...
L, but the output of the control system has to be

either a torque command or an acceleration command for joint 2; that is, either τ2 or q̈2.
These quantities are computed as follows. First, from Eq. 5 we have

...
L = −mgc̈x; but

mc̈x is the x component of the ground reaction force acting on the robot, which is τ0. So...
L = −gτ0. Substituting this into Eq. 8 and rearranging to put all of the unknowns into
a single vector produces the equation





0 H01 H02

0 H11 H12

−1 H21 H22









τ2
q̈1
q̈2



 =





−
...
L/g − C0

−C1

−C2



 , (34)

which can be solved for both τ2 and q̈2.

4.2 Transfer Function

A linear system that is described in state-space form by the equations

ẋ = Ax+Bu

y = Cx
(35)

has a transfer function that can be expressed in the frequency domain as

y(s) = C(1s−A)−1Bu(s) (36)

(Anderson and Moore, 1971), where 1 denotes an identity matrix of the appropriate size.
Applying this formula to the linearized system, as described above, produces the following
formula for the transfer function from the input u to the output q2:

q2(s) =
a0(1− T 2

c s
2)

s4 + a3s3 + a2s2 + a1s+ a0
u(s) , (37)

assuming that the gains have been set according to Eq. 33. The complete transfer function
from qc to q2 is therefore

q2(s) =
a0(1− T 2

c s
2)(1 + α1s + α2s

2)

s4 + a3s3 + a2s2 + a1s+ a0
qc(s) . (38)

Thus, the closed-loop system has four poles at frequencies chosen by the designer, two
zeros at frequencies determined by the physical properties of the robot, and optional zeros
chosen by the designer if one or both of the feedforward gains αi are nonzero.
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command

response

Figure 4: Typical non-minimum-phase behaviour: each change in the command signal
provokes an initial response in the opposite direction

The two zeros determined by the mechanism lie at ±1/Tc. The zero at −1/Tc can be
eliminated by setting one of the poles equal to −1/Tc. This is a good idea, partly because
it simplifies the behaviour of the system, and partly because it reduces the coupling
between the conflicting activities of maintaining the robot’s balance and following the
command signal. (The eigenvector associated with this pole involves only L, L̇ and L̈, so
it can be regarded as being devoted exclusively to balancing.)

However, the zero at 1/Tc is more problematic. This is the zero responsible for the
non-minimum-phase behaviour of the system, which degrades the tracking response of
the system in the way illustrated in Figure 4. Put simply, each time the command signal
changes, the robot has to alter its state of balance before it can respond, and in order to
do this the robot has to move briefly in the wrong direction. The magnitudes of these
excursions in the wrong direction can be large, especially if the command signal specifies
large, fast movements and/or the designer is aiming for high performance by setting the
gains high.

The conventional wisdom is that non-minimum-phase behaviour cannot be eliminated,
because the corresponding pole is unstable. However, there is a way to do it, which is the
subject of the next section.

4.3 Leaning in Anticipation

If one watches how the robot behaves in response to command signals, the impression
is that the robot is continually being ‘surprised’ by changes in the command, and is
continually having to make large excursions in order to adjust its state of balance as
quickly as possible to suit the new command. This is not how humans behave. We
nearly always know what movements we intend to make in the immediate future (i.e. the
next 1 or 2 seconds), and our current movements are tweaked in ways that facilitate the
movements that we intend to make next (Rabbani et al., 2014).

Consider, for example, the task of pulling open a heavy door. We know that this will
require a large horizontal force, and so we begin to lean backwards slightly in advance
of exerting the force in order to avoid being pulled off balance. This is a good strategy,
and a good balance controller ought to be able to replicate it. However, to do so requires
that the command signal be modified so that it contains information about the future.
This is feasible because a robot’s high-level controller, which is involved in activities such
as planning, typically does know what movements it intends to make in the immediate
future.

So we have two problems to solve: how to eliminate the zero at 1/Tc, and how to
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incorporate information about the future into the command signal. The solution turns
out to be very simple: starting sufficiently far in the future, pass the command signal
through a first-order low-pass filter with a pole at −1/Tc, running backwards in time to
the current instant. This solves the first problem because a pole at −1/Tc in reverse time
becomes a pole at 1/Tc in forward time, so the filtered signal already incorporates the
correct pole to eliminate the zero at 1/Tc. And the second problem is solved because the
output of the filter is a function of both the current value of qc and expected future values.
Technically, this makes it an acausal filter.

Let qf denote the filtered command signal, and let us redefine u as follows:

u = qf + α1q̇f + α2q̈f (39)

which replaces Eq. 28. The transfer function from qc to qf is 1/(1− Tcs), so the complete
transfer function from qc to q2 is now

q2(s) =
a0(1 + Tcs)(1 + α1s+ α2s

2)

s4 + a3s3 + a2s2 + a1s+ a0
qc(s) , (40)

which is no longer a non-minimum-phase system. Furthermore, by setting one of the poles
to −1/Tc, as mentioned above, the last of the mechanism-dependent zeros is removed,
and the transfer function simplifies to three poles and up to two zeros, all of them freely
selectable by the control system designer. If the plant were linear, then it would really
be true that all dependence on the behaviour of the robot has been eliminated from the
transfer function (but not from the total behaviour of the robot, which depends also on
the values of L, L̇ and L̈). However, the plant is nonlinear, so the robot’s dynamics will
always have some effect on the transfer function, especially when the robot is making
large, fast movements.

Ideally, the acausal filter should start at a point so far into the future as to be indis-
tinguishable from infinity. However, looking ahead by 3Tc is enough to get 95% of the
desired effect, and looking ahead by 4Tc gets 98%.

5 Performance Evaluation

This section presents several simulation experiments aimed at evaluating the tracking
performance of the control system, investigating its sensitivity to model errors and lim-
itations in the robot’s sensors and actuators, and comparing it against some previously
published balance controllers.

The control system was tested on a robot consisting of a flywheel on a stick. The
flywheel has a mass of 1kg and a radius of gyration of 0.5m. The stick has a length of 1m
and a mass of 1kg which is treated as a point mass located at the mid point of the stick.
The robot is balanced when the stick is upright, and the stick is upright when q1 = 0. The
plant parameters for this robot are Y1 = 4 and Y2 = −0.407747/ cos(q1), so the plant is
only slightly nonlinear. The value of Y2 depends on gravity, which is set at g = 9.81ms−2.
Other quantities of interest are Gv = cos(q1)/8 and Tc = 1/

√

g cos(q1).
The simulations reported in this paper were all performed in Simulink using the inte-

grator ode45 with relative tolerance set at 10−6; and the simulation start time was set at
−2s so that all rising exponentials associated with the acausal filter are very close to zero
when the simulation starts.
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Figure 5: The balance controller’s performance on the flywheel-and-stick robot (times in
seconds, angles in radians). This movement is shown in Extension 1

5.1 Tracking Accuracy

Figure 5 shows the results of the first simulation experiment. In this experiment, the
controller’s gains were set as follows: one pole at −1/Tc, three poles at −20rad/s and
two zeros at −20rad/s, for a theoretical transfer function from qc to q2 of 1/(1 + 0.05s).
The acausal filter was implemented analytically assuming a constant value for the natural
time constant of Tc = 0.319275s, which is the value it takes when q1 = 0. As q1 never
exceeds ±0.2rad, the error in this approximation is never more than 1%.

The graph in Figure 5 shows a sequence of motion commands and the robot’s response.
The command sequence consists of a step at t = 1s, followed by two more steps in quick
succession, followed by three linear ramps having slopes of 6, 2 and 1rad/s, followed by a
sine wave at 1Hz. The graph also shows the acausally filtered command signal qf .

Overall, the tracking is very accurate everywhere, except for small overshoots in re-
sponse to the three steps. In particular, the delays in following the ramps and sine wave
are very close to the theoretical value of 50ms implied by the transfer function, and there
is no sign of non-minimum-phase behaviour. It is quite noticeable that qc and q2 are
almost the same, whereas qf follows a very different curve. This shows that the acausal
filter is accurately cancelling out the zero at 1/Tc. The action of leaning in anticipation
can be seen in the value of q1, especially between t = 0 and t = 1. However, this behaviour
is more easily seen in the video in Extension 1.

The overshoots are caused by discontinuities in qc: a step in the value of qc causes
a step in the value of q̇f , and therefore an infinite spike in q̈f ; but the spike invalidates
Eq. 39. One remedy is to use one zero instead of two, so that α2 = 0 in Eq. 39 and q̈f is no
longer required. However, a better solution is to avoid sending discontinuous command
signals to the controller by replacing each step with an alternative waveform, such as a
fast ramp. (Discontinuities in q̇c do not cause overshoots.) The response to a fast ramp
can be seen in Figure 6.

Returning to the period between t = 0 and t = 1, it can be seen that for as long as
the input qf is a rising exponential with time constant Tc, the robot simply leans over and
falls without doing anything with its actuated joint. If the exponential were to continue,
instead of stopping at t = 1, then the robot would continue falling until it hits the ground.
Thus, an input signal of this form is guaranteed to make the robot fall over, even though
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Figure 6: The effect of varying the value of Tc used by the acausal filter

all of the poles are stable.

5.2 Inaccurate Tc in Acausal Filter

The good performance of the balance controller relies on accurate cancellation of the zero
at 1/Tc by the acausal filter. This raises the question of what happens if the value of Tc

used by the filter is inaccurate. The value used in the first experiment is already slightly
inaccurate because it is assumed to be a constant; but the consequences are too small to
show up in Figure 5. Therefore, a second experiment was performed in which the acausal
filter was programmed to use substantially incorrect values of Tc.

The results of this experiment are plotted in the graph in Figure 6, which shows the
command signal and three responses: one using the correct value of Tc when q1 = 0, one
using 0.8 times the correct value, and one using 1.2 times the correct value. The command
signal now consists of a fast ramp with a slope of 20rad/s, which replaces the initial step
in Figure 5, followed by a ramp with a slope of −2rad/s and a 1Hz sine wave. When the
filter uses the correct value of Tc, the resulting response is very good. When the filter uses
0.8 times the correct value, the controller under-estimates the amount of leaning required,
and ends up making a small excursion in the opposite direction before each movement.
It also overshoots on the sine wave. And when the filter uses 1.2 times the correct value,
the controller over-estimates the amount of leaning required, and ends up creeping in the
correct direction ahead of each movement. It also undershoots on the sine wave.

To put Figure 6 into context, Figure 7 shows the response of the balance controller
without the acausal filter. On comparing these two figures, it can be seen that the tracking
errors in Figure 7 are far greater than those in Figure 6. Thus, the acausal filter greatly
improves the performance of the balance controller, even if it is using a value of Tc that
is out by 20%.

Graphs resembling Figure 7 have been published previously. See, for example, Figure 5
in Azad and Featherstone (2016) or Figure 3.4 in Azad (2014). When comparing Figure 7
with these earlier graphs, a few differences should be borne in mind. First, the command
signal contains much larger, faster movements. For example, the command signal in
Figure 7 includes a 1Hz sine wave with a magnitude of 1rad, compared with a 0.125Hz
sine wave with a magnitude of 0.2rad in the earlier graphs.

Another difference is that the gains are set much higher in the new controller—poles
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Figure 7: The response without the acausal filter

at −20rad/s instead of −7rad/s. Such high gains produce crisp, fast, accurate responses
when the controller is used in conjunction with the acausal filter, but they produce un-
acceptably large excursions when used without the filter, such as the 4rad spike at the
beginning of the fast ramp. In the absence of the acausal filter, there is a trade-off be-
tween the speed of response and the magnitudes of excursions at the beginnings and ends
of movements. This trade-off is illustrated in Figure 6 in Azad and Featherstone (2016)
and Figure 3.5 in Azad (2014). For a robot that stands approximately 1m tall, the sweet
spot occurs when the poles are set at approximately −7rad/s. However, the acausal filter
removes the need for this compromise, and therefore permits much faster poles to be used.

Finally, in Figure 7 the feedforward gains have not been tuned for accurate tracking
of linear ramps. To track a linear ramp with zero delay, as illustrated in Figure 4, the
transfer function must have the form (a0 + a1s+ · · · )/(b0 + b1s+ · · · ) with a0/b0 = a1/b1;
and α1 in Eq. 28 (not Eq. 39) must be chosen accordingly. This choice of α1 replicates
the effect of Ld in the earlier works.

Before moving on, it should be understood that Tc is an easily-measured property of a
robot mechanism, and there should be no difficulty in measuring it to an accuracy better
than 20%. So errors as large as those shown in Figure 6 should not occur in practice.

5.3 IMU Drift

All balance controllers are sensitive to errors in the estimate of the vertical direction. In
a mobile robot, this estimate comes from an inertial measurement unit (IMU), possibly
combined with other sensors. The output of an IMU can be regarded as being contami-
nated with noise having a slowly drifting mean; and the mean error can be regarded as a
constant over short time intervals such as a few seconds.

Figure 8 shows the balance controller’s response in the presence of a constant error in
q1, which mimicks a slowly varying error in an IMU’s estimate of the vertical direction.
The magnitude of the error is 0.5◦ (0.009rad), which is typical of the maximum error in
the kinds of high-quality IMU that are currently used in humanoids and legged robots.

Two responses are shown. The one labelled ‘q2 fast’ refers to the controller as described
earlier, and the one labelled ‘q2 slow’ refers to a new setting of the gains in which the two
cancelled poles have been reduced from −20rad/s to −3.5rad/s (a value close to −1/Tc),
and the corresponding zeros have been reduced to match. So the two versions of the
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Figure 8: The effect of a constant error in q1 mimicking a slowly varying error in the
IMU’s estimate of the vertical direction
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Figure 9: The effect of error in the dynamic model used by the controller

controller theoretically have the same transfer function, but the latter has substantially
lower feedback gains.

The result of a constant error in q1 is a constant error in q2. For the high-gain controller
the error is 0.09rad (5◦), and for the low-gain controller it is 0.23rad (13◦). These results
bracket the results reported in Figure 14 in Azad and Featherstone (2016), where a 1◦

error in the sensor produces approximately a 0.3rad error in both Azad’s controller and
the controller of Grizzle et al. (2005), admittedly on a different robot.

This result indicates that accurate tracking of command signals will require accurate
compensation of IMU drift. The obvious way to implement this is to use the steady-state
error in the robot’s tracking response as a measure of the drift in the IMU.

5.4 Model Error

The next effect to be investigated is an error in the dynamic model used by the controller.
Figure 9 shows what happens when the controller’s model has an incorrect value for the
radius of gyration of the flywheel: either 0.53m or 0.47m. (The correct value is 0.5m.)
This error causes only a 1% error in the controller’s calculated value of Tc, which is unlikely
to have much effect, but a 10% error in the calculated value of the velocity gain (Gv),
which is the main effect visible in the graph.

As Figure 9 shows, when the controller believes the radius of gyration to be 0.53,
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Figure 10: Time delays, sensor noise and actuator saturation

it over-reacts to the command signal, resulting in overshoots and ringing; and when it
believes the radius of gyration to be 0.47, it under-reacts, resulting in a sluggish response
but still with some evidence of overshoot.

One important result from this experiment is that the high-gain controller (cancelled
poles at −20) goes unstable with this magnitude of model error, so the results in Figure 9
were obtained using the low-gain controller (cancelled poles at −3.5). This suggests that
the gain settings in the high-gain controller are too high for practical use.

5.5 Time Delay, Noise and Saturation

The next experiment investigates the effect of computation time delays, sensor noise and
actuator saturation. In particular:

1. The controller is modelled as a servo running at a rate of 200Hz, with a full 5ms
delay between inputs and outputs.

2. Uncorrelated Gaussian noise of magnitude 0.08◦/s RMS is fed into the controller’s
reading of q̇1, and its integral is fed into the reading of q1, which simulates the effect
of noise in an IMU’s estimate of the vertical direction.

3. The actuator torque is limited to the range (−2q̇2±40)Nm, which sets both a speed
limit of 20rad/s and a power limit of 200W when the actuator is performing positive
work.

The velocity noise magnitude is based on the data sheet of the 3DM-GX4 IMU from
Lord Microstrain, which specifies gyro noise density of 0.005◦/s/

√
Hz and a maximum

bandwidth of 250Hz. In theory, the integral of this noise should drift without limit.
However, during the relatively short period of the simulation, the amount of drift is so
small that the noise signal injected into q1 stays well below the datasheet value of roll
and pitch error. The actuator torque limit is consistent with an electric motor having
a nominal speed of about 6000rpm and a stall torque of a little more than 1.5Nm (to
account for frictional losses) driving a 30 : 1 ratio harmonic gear. 40Nm is about one
ninth of the peak torque requested by the high-gain controller to follow the fast ramp.

Figure 10 shows the response of both the high-gain controller (labelled ‘q2 fast’) and
the low-gain controller (‘q2 slow’) under these conditions. It turns out that the 5ms delay
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Figure 11: Actuator output torque during and after the fast ramp. Saturated outputs are
highlighted

has almost no effect. Likewise, the noise has too little effect to be visible in this graph.
However, the effect of actuator saturation is clearly visible.

In Figure 10, the actuator saturates only on the fast ramp. The primary effect of this
saturation is that the robot moves more slowly than assumed by the acausal filter, which
gives gravity more time to tip the robot in whichever direction it happens to be leaning.
The end result is that the robot has leaned a little too much, and has to overshoot in
order to correct the mistake. Figure 10 also shows one of the negative consequences of
lowering the gains: a slower response to unanticipated disturbances.

To further illustrate the actuator saturation, Figure 11 plots the actuator output
torque over the period from 0.8s to 2.2s, which covers the whole of the fast ramp and the
beginning of the slow one. The portions of the curve where the actuator is in saturation
are highlighted in pink. When the actuator is not saturated, the output torque is exactly
the value computed by the control system.

This figure also shows a sharp difference between the two controllers’ response to the
IMU noise, the response of the high-gain controller being more than 10 times greater than
that of the low-gain controller. An analysis of the velocity signals reveals the following:
in response to the 0.08◦/s RMS noise injected into the measurement of q̇1, the resulting
RMS noise in the value of q̇1 is 0.07

◦/s in the case of the low-gain controller and 0.86◦/s in
the case of the high-gain controller. So the high-gain controller has greatly over-reacted
to the noise, and the low-gain controller has not.

In both cases, the RMS noise in the value of q̇2 is six times greater than that in
q̇1. This is in accordance with expectation based on the angular velocity gain of the
robot (Featherstone, 2015a). Angular velocity gain is the ratio of a change in the angular
velocity of the CoM about the support point to a change in the angular velocity of the
actuated joint, both changes being caused by an impulse at the actuated joint. For this
particular robot, the angular velocity gain is the ratio ∆q̇1/∆q̇2, and its value is −1/6.

5.6 Comparison with Other Balance Controllers

The final experiment compares the step response of the new controller with those of four
other controllers: the ones described in Spong (1995), Berkemeier and Fearing (1999),
Azad and Featherstone (2016) and Grizzle et al. (2005). Specifically, the test leading to
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Figure 12: Comparison of the step response of the new controller with those of four
existing balance controllers (times in seconds, angles in radians)

link 1 link 2
link length (m) 0.4 0.6
mass (kg) 0.49 0.11
CoM (m) 0.1714 0.4364
inertia@CoM (kgm2) 0.0036 0.0043

Table 1: Parameters of the double pendulum used in Figure 12

the data plotted in Figure 13 of Azad and Featherstone (2016) was repeated with the new
controller, and the results are shown in Figure 12.

This experiment uses the same robot as in Azad and Featherstone (2016), and its
parameters are given in Table 1. This robot’s balancing dynamics are approximately 50%
faster than the flywheel and stick, so the new controller’s gains were set as follows: one
pole at −1/Tc, three poles at −30rad/s and two zeros at −30rad/s. (Tc = 0.213s for this
robot in its initial configuration, and this is the value used in the acausal filter.) The gains
of the other controllers were set as explained in Azad and Featherstone (2016), which also
explains the steps that were taken to achieve as fair a comparison as possible.

Figure 12 plots the command signal and all five responses. The command is a step
from q2 = −π/2 to q2 = 0 at t = 0, and the responses of the four existing controllers
are identical to those shown in Figure 13 of Azad and Featherstone (2016). In the new
controller’s response, it can be seen that q2 begins to creep forward in anticipation of the
step, so that the new controller has a small head start on the other four when the step
takes place at t = 0. This creep resembles the creep that appears in Figure 6, but it has
a different cause: the nonlinearity of this robot’s dynamics in its initial configuration.

When the step occurs, the new controller’s response is swift and accurate, with no
sign of non-minimum-phase behaviour. It takes 0.1s to reach q2 = 0, and a further 0.15s
to settle to within 0.01rad of the commanded position after an overshoot of 0.044rad.
The other controllers are all slower by more than a factor of 3, and the main reason can
be seen to be their non-minimum-phase behaviour. As explained in Section 5.2, non-
minimum-phase behaviour imposes a compromise between speed and excursions in the
wrong direction. Some of these controllers can be sped up by using higher gains, but only
at the expense of bigger excursions.
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6 Extension to General Planar Robots

This section extends the theory of sections 3 and 4 to the case of a general planar robot,
which may contain kinematic loops, balancing on a single point. The performance of the
extended controller is illustrated with a simulation of a triple pendulum making a variety
of movements.

If a robot has more than one actuated motion freedom then two aspects of the balance
problem change: (1) there is now a choice of which motion to use for balancing; and (2)
there are now motion freedoms that are separate from the balancing activity, which can
be devoted to tasks other than balancing. Another thing that changes is that the robot
now has a balance null space, which is the space of movements of the actuated joints
that do not affect cx. Ideally, the non-balance motions should be designed to lie in or
close to this null space, so that they cause little or no disturbance to the robot’s balance.
However, if the robot is able to lean in anticipation then substantial disturbances can be
accommodated.

Let us replace the double pendulum with a general planar mechanism, retaining only
the fictitious prismatic joint and the passive revolute joint that models the contact with the
ground. The rest of the mechanism is assumed to be fully actuated. As the mechanism
may contain kinematic loops, not all of the joint variables will be independent. We
therefore introduce a vector of independent generalized coordinates, y = [y0 y1 y2 yT

3 ]
T,

in which y0 = q0, y1 = q1, y2 is the coordinate expressing the movement to be used for
balancing, and y3 is a vector containing the rest of the generalized coordinates.

The movement expressed by y2 can be any one actuated joint motion, or any desired
combination of actuated joint motions, provided that the chosen movement has a nonzero
effect on cx. However, in practice one should choose a movement that has a large effect.
y2 can be regarded as the variable of a user-defined virtual joint that is a generalization
of joint 2 in the previous sections.

The equation of motion of this robot is
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, (41)

in which w2 and w3 are the generalized forces corresponding to y2 and y3, and Hij are the
elements and submatrices of a generalized inertia matrix. This equation replaces Eq. 8.
Equations 3–5 and 7 remain valid, but Eq. 6 becomes

L = H11q̇1 +H12ẏ2 +H13ẏ3 . (42)

Likewise, Eq. 9 becomes

−L̈/g = H01q̇1 +H02ẏ2 +H03ẏ3 , (43)

and so Eq. 10 becomes

[

L

L̈

]

=

[

H11 H12

−gH01 −gH02

] [

q̇1
ẏ2

]

+

[

H13

−gH03

]

ẏ3 . (44)
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Figure 13: Modified plant model for a general planar robot

Solving this equation for ẏ2 gives

ẏ2 = Y1L+ Y2L̈− Y3ẏ3 , (45)

where Y1 and Y2 are as given in Eq. 12, and

Y3 =
E

D
(46)

where
E = H13H01 −H11H03 (47)

(cf. Eq. 13). The modified plant model is shown in Figure 13. Observe that the influence
of the non-balance motions is limited to the value of the scalar signal Y3ẏ3. If this signal
is zero then these motions do not disturb the robot’s balance.

The complete control system now consists of a balance controller, which is responsible
for y2, and a motion controller, which is responsible for y3. The motion controller receives
as input a command signal y3c, and produces as output the value of ÿ3 calculated accord-
ing to a suitable control law. The balance controller receives both the control signal y2f ,
which replaces qf , and the signal ẏ3f which is explained below. The output is still

...
L.

The design of the balance controller is largely unaffected by ẏ3. In particular, Eq. 30
is unaffected, and the gains are still as given in Eq. 33. However, there is now a need
to compensate for the disturbances caused by ẏ3. Furthermore, it is desirable that the
robot should lean in anticipation of these disturbances. This can be accomplished with
the modified control law

...
L = kddL̈+ kdL̇+ kL(L− Y3ẏ3f

Y1

) + kq(q2 − u) , (48)

which replaces Eq. 27. In this equation, ẏ3f is the acausally filtered value of ẏ3c, which
is the derivative of the command signal y3c. As the actual disturbance depends on the
actual velocity, rather than the commanded velocity, it follows that there is an assumption
of accurate tracking of ẏ3c built into this control law. The rationale behind Eq. 48 is that
cancellation of the incoming signal Y3ẏ3 requires L to be offset by an amount Y3ẏ3/Y1.

Finally, the generalized forces must be calculated and mapped to the actuated joints.
The first step is to solve









0 0 H01 H02

0 0 H11 H12

−1 0 H21 H22

0 −1 H31 H32

















w2

w3

q̈1
ÿ2









=









−
...
L/g − C0 −H03ÿ3

−C1 −H13ÿ3

−C2 −H23ÿ3

−C3 −H33ÿ3









, (49)
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which is the generalization of Eq. 34. This is the point where the outputs of the motion
and balance controllers (ÿ3 and

...
L) are combined. The final step is to solve

GTτa =

[

w2

w3

]

, (50)

where τa is the vector of force variables at the actuated joints, and G is the matrix that
maps [ẏ2 ẏ

T
3 ]

T to the vector of actuated joint velocities (i.e., a submatrix of the Jacobian
from ẏ to q̇). If the mechanism has the same number of actuators as actuated motion
freedoms then G is square and Eq. 50 has a unique solution; but if the mechanism is
redundantly actuated then G is rectangular and Eq. 50 has infinitely many solutions. In
this case it is necessary to choose one particular solution in accordance with a user-defined
policy on the distribution of forces among the actuators.

6.1 Simulation and Analysis

This subsection demonstrates the performance of the generalized balance controller by
means of a simulation in which the controller makes an inverted triple pendulum perform
a variety of movements while maintaining its balance. A triple pendulum is chosen because
it is the simplest mechanism that exhibits all of the dynamics discussed in this section.

The robot is a 3R planar kinematic chain that moves in the vertical plane. Joint 1
is passive, and the robot is pointing straight up in the configuration q1 = q2 = q3 = 0.
The link lengths are 0.2m, 0.25m and 0.35m; the masses are 0.7kg, 0.5kg and 0.3kg; and
the links are modelled as point masses with the mass located at the far end of each link.
These are the parameters of a robot identified in Featherstone (2015a) as being good at
balancing, and also the robot used in Featherstone (2015b). To facilitate comparison, the
commanded movements are the same as those in Featherstone (2015b), but on a faster
time scale in view of the higher performance of the newer control system.

The position controller employed in this simulation is a simple PD controller with
acceleration feedforward (from the command input ÿ3c) and two poles at −20rad/s, so the
proportional and derivative gains are 400 and 40, respectively. As the controller benefits
from the dynamics calculation in Eq. 49, it is effectively a computed-torque controller,
and its tracking accuracy is perfect everywhere except where there is a step change in the
position or velocity command.

The balance controller uses the control law in Eq. 48 with feedback gains determined
by placing one pole at −1/Tc and the other three all at −20rad/s. The input u is
calculated from y2f and its derivatives, as per Eq. 39, using feedforward gains of α1 = 0.1
and α2 = 0.0025, which put two zeros at −20rad/s, thereby cancelling two of the poles.
The theoretical closed-loop transfer function for the balance variable, y2, is therefore
1/(1 + 0.05s).

The acausal filter was implemented analytically as follows. For the step and the sine
wave, a constant value of Tc was used, equal to the correct value at configuration [0, 0, 0]T.
For each ramp, two values were used: the correct values at the beginning and end of the
ramp. This results in slightly incompatible curve segments because it ignores the effect
of Tc varying continuously during the course of the ramp. So the segments were stitched
together in such a way that the position signal was continuous, but the velocity signal
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Figure 14: Simulation results for balancing a triple pendulum (times in seconds, angles
in radians). This movement is shown in Extension 2
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contained small steps. The consequences of these approximations are too small to show
up in the graphs.

Figure 14(a) shows the command signals and responses, as well as the acausally filtered
signal y2f . Times are expressed in seconds and angles in radians. The commands consist
of a step, a ramp and a sine wave for y2 while y3 is held at zero, a ramp of y3 while y2 is
held at zero, and finally a ramp of y2 with y3 held at 1.5rad. Up until the final ramp, y2
and y3 are defined by y2 = q2 and y3 = q3, but then y2 is redefined to be y2 = q2− q3 from
t = 9.75s onwards. So the final ramp involves q2 ramping from 0 to 1.5rad while q3 ramps
from 1.5rad to 0. This can be seen clearly in Figure 14(b), which shows the motion of
the robot expressed in joint space.

Note that these are relatively large, fast motion commands. Comparable graphs in the
literature, such as Figure 5 in Azad and Featherstone (2016) and Figure 6 in Grizzle et al.
(2005), show responses to much slower command signals; and the responses themselves
are often sluggish. For example, Figure 6 in Grizzle et al. (2005) shows that the joint
variables do eventually track the 0.2Hz sine wave command, but it takes them more than
10 seconds to settle into this pattern. In contrast, the new balance controller’s settling
time on the triple pendulum is about 0.5s after a step, and even less going into or out of
a sine wave or ramp. Furthermore, the example mechanism in Grizzle et al. (2005) is of
similar dimensions to the triple pendulum; so the balancing behaviour of the two robots
will be similar, and the difference in settling times can be attributed almost entirely to
the performance of the two control systems.

Figure 14(a) shows excellent tracking accuracy everywhere except for an overshoot on
the step at t = 1 and a delay in tracking the final ramp that is larger than for the other
movements. The overshoot is essentially the same phenomenon as discussed in Section 5.1.
Again, the best remedy is simply not to issue a step command to the balance controller.
The problem with the final ramp is discussed below. Both the first ramp and the sine
wave are tracked with a delay only a few milliseconds greater than the theoretical delay
of 50ms implied by the transfer function for y2.

Figure 14(a) also shows small tracking errors in y2 at times 8s, 9s and 9.75s. They
are also noticeable in Extension 2. The first two are caused by the beginning and end of
the ramp in y3. As the ramp involves two step changes in velocity, the position controller
experiences a small tracking error at both the beginning and the end of the ramp. The
small tracking errors in y2 are of similar magnitude to the momentary tracking errors in
y3, and can be attributed to the small difference between the actual and anticipated values
of the balance disturbance caused by the ramp. These tracking errors are much smaller
than the equivalent tracking errors appearing in Figure 5(a) of Featherstone (2015b),
which shows that leaning in anticipation greatly improves the balance controller’s ability
to reject disturbances caused by the other movements.

The third tracking error is caused by the step change in the definition of y2 at t = 9.75s
mentioned above. The redefinition causes a disturbance that is proportional to the amount
of activity in the state variables at the time that the change occurs. If the robot were
completely stationary then the disturbance would be zero. This is one aspect of the
balance control system that needs more work: there needs to be a way to vary the
mapping between y and q while the robot is in motion without significantly degrading
the performance of the controller.

Figure 14(c) plots the value of Tc, which can be seen to vary in a narrow range from
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approximately 0.214s to 0.233s even though the robot is making large changes in its
configuration. This is a property of the robot mechanism, and will vary from one robot
to the next. However, for most balancing robots it will typically be the case that Tc does
not vary very much. This suggests that assuming a constant value for Tc could be an
acceptable approximation.

Figure 14(d) plots the value of Y1. For the first 9.75 seconds this quantity varies in
a range from approximately 26 to 33, with a spike of 41 coinciding with the overshoot
following the step in y2c at t = 1. However, at the point where y2 is redefined, Y1 jumps
to 277, and then climbs slightly to 279 before dropping steadily back down to 101 during
the final ramp. So, for the first 9.75 seconds the plant model is only slightly nonlinear,
with the two gains varying in a narrow range, but then the situation changes when y2 is
redefined.

The explanation can be found in Figure 14(e), which plots the velocity gains of joints
2 and 3 along with their difference, which is the velocity gain of the motion freedom
q2 − q3 (Featherstone, 2015a). For the first 9.75 seconds Gv(y2) = Gv(q2); but then y2 is
redefined, and for the remaining time Gv(y2) = Gv(q2) − Gv(q3). As Gv(y2) appears in
the denominator of Eq. 25, this accounts for the large change in Y1.

The large drop in Gv(y2) provides an explanation for the relatively poor tracking of
the final ramp: with Gv so close to zero, the balance controller is attempting to balance
the robot using a movement that has almost no effect of the horizontal coordinate of the
CoM, making the task of balancing much more difficult. In a practical system with noisy
sensors, there would be a large increase in the magnitude of the quivering of the robot
due to sensor noise, beginning at the moment when y2 is redefined.

Without a model of the physical process of balancing, in which the behaviour of the
plant is described in terms of physically meaningful properties like velocity gain, it would
not be easy to understand the dependency of balancing performance on the commanded
behaviour.

7 Extension to 3D

The ultimate objective of the work presented in this paper is a simple, high-performance
balancer in 3D. This section outlines briefly some of the progress made so far, and what
still needs to be done.

In principle, balancing in 3D involves controlling two horizontal coordinates of the CoM
instead of only one. This can be accommodated in the model in Figure 2 by replacing
the state variables L, L̇, L̈ and q2 with 2D vectors, and replacing the gains Y1 and Y2

with 2 × 2 matrices. The resulting plant model has two inputs, two outputs and 8 state
variables, and the balancing activity requires two actuated degrees of freedom.

The robot also has two state variables relating to its freedom to spin about the contact
normal. Of these, only the velocity variable appears in the robot’s equation of motion and
influences how the robot and the balance controller behave. However, neither variable is
directly related to balancing, so neither variable appears in the 3D balancing plant model.

The coefficient matrix in the closed-loop equation of motion is now an 8 × 8 matrix.
However, it is at least sometimes possible to find a coordinate system in which both of the
2×2 matrices replacing Y1 and Y2 are triangular, in which case the characteristic equation
of the 8×8 matrix simplifies into the product of two quartic polynomials, thereby allowing
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the gains of the 3D balance controller to be determined in a manner very similar to that
described in Section 4.

For a highly symmetrical robot, like the Ballbot (Lauwers et al., 2006), the problem
would now be solved. However, for a less symmetrical robot there is more to do. For
example, Figure 15 shows a simplified version of a 3D hopping and balancing robot called
Skippy, which is still at the design stage. This robot consists of a leg, a torso and a
crossbar, connected by actuated revolute joints, and it can be regarded as a planar double
pendulum with a crossbar attached to the top.

For this robot, or any machine similar to it, it makes sense to decompose the task of
3D balancing into two subtasks: balancing in the plane, and keeping the plane vertical.
This is the idea behind bend-swivel control (Azad, 2014; Azad and Featherstone, 2014),
and an example of the resulting behaviour is shown in Extension 3. Clearly, the bend
controller is just the balance controller described here. However, the swivel controller is
a little different because it has an extra function: in addition to keeping the bend plane
vertical, this controller also serves to rotate the plane about the vertical line through the
contact point, thereby allowing the robot to reorient itself to face in any direction.

One issue that needs to be resolved is to identify the conditions under which the 2× 2
gain matrices can be made to be triangular. Another issue is that gyroscopic forces arise
in the 3D case, and they cause significant disturbance to the robot’s balance. It will
therefore be necessary for the plant model to account for them, and for the controller to
compensate for them.

8 Conclusion

This paper has presented a new model of the physical process of balancing on a point by
a general planar robot. The essential parameters of the robot’s balancing behaviour are
reduced to just two numbers, plus a third number to describe the influence of all other
movements on the balancing behaviour; and a physical interpretation of these numbers
is provided. All three numbers can be computed efficiently using standard dynamics
algorithms.

The model gives rise to a simple balance controller, and also a simple method of
leaning in anticipation. The latter consists of a time-reversed low-pass filter interposed
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between the command signal and the controller’s input, which runs from a point in the
future back to the present. It therefore requires a preview of future values of the command
signal. The effect of the filter is to cancel the non-minimum-phase behaviour of the robot,
which allows the balance controller to track the command signal accurately and at a
bandwidth substantially faster than the robot’s natural frequency of toppling. It also
helps the balance controller to reject disturbances caused by other commanded motions
of the robot. Simulation results are presented showing the accuracy with which the
controller tracks motion commands; its robustness to model errors, computation time
delays, sensor noise and actuator saturation; a comparison of its step response with those
of other balance controllers; and how it works in combination with a separate motion
controller.

As planar balancing is a solved problem, the contribution of this paper is to simplify the
problem and its solution without loss of generality, to present a controller with excellent
performance at high-bandwidth tracking of large, fast motions, and to present an approach
to balancing that appeals more to the physical process of balancing and less to the control
theory. Clearly, the ultimate objective is a simpler theory of balancing in 3D, and the
final section in this paper briefly explains how this can be done.
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Appendix A: Index to Multimedia Extensions

The multimedia extension page is found at http://www.ijrr.org.

Table of Multimedia Extensions

Extension Media type Description
1 Video The motion sequence shown in Figure 5
2 Video The motion sequence shown in Figure 14
3 Video Demonstration of bend-swivel control

Appendix B: Property of Joint-space Momentum

This appendix proves the result pi = sTi hν(i) for any joint i in a general rigid-body
system, provided that the joint does not participate in any kinematic loop. pi and si are
the momentum variable and axis vector of the joint, and hν(i) is the total momentum of
the subsystem consisting of body i and its descendants. In general, si and hν(i) will be
spatial vectors. However, if the whole system is planar then they may instead be planar
vectors.

Given a general rigid-body system, we first construct a spanning tree and number the
bodies and joints therein from 1 to N according to a regular numbering scheme. Without
loss of generality, we assume that every joint has only a single degree of freedom (DoF),
which means that every multi-DoF joint has already been replaced by a kinematically
equivalent chain of single-DoF joints connected by massless bodies, and that these extra
bodies and joints are already included in N .

Let p and q̇ denote the joint-space momentum and velocity vectors of the tree. By
definition, the two are related by the equation

p = Hq̇ , (51)

where H is the joint-space inertia matrix of the tree. This implies that

pi =

N
∑

j=1

Hij q̇j . (52)
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The definition of H for a general kinematic tree with single-DoF joints is

Hij =







sTi Iν(i)sj if i ∈ ν(j)
sTi Iν(j)sj if j ∈ ν(i)

0 otherwise
(53)

where si is the joint axis vector (i.e., joint motion subspace vector) of joint i, Ii is the
inertia of body i (spatial or planar as appropriate), ν(i) is the set of all bodies in the
subtree beginning at body i, and Iν(i) =

∑

j∈ν(i) Ij (i.e., the composite-rigid-body inertia

of the subtree).
Let κ̄(i) be the set of all bodies on the path between body i and the base (body 0),

excluding both body i and the base, and let κ(i) = κ̄(i) ∪ {i} be the same set including
body i. If we use the terms ‘ancestor’ and ‘descendant’ in an inclusive sense, meaning
that body i is both an ancestor and a descendant of itself, and use the term ‘proper
ancestor’ in an exclusive sense, then the sets ν(i), κ(i) and κ̄(i) can be seen to be the sets
of descendants, ancestors and proper ancestors, respectively, of body i. κ(i) is also the
set of joints on the path between body i and the base.

We now rewrite Eq. 53 as follows:

Hij =







sTi Iν(i)sj if j ∈ κ̄(i)
sTi Iν(j)sj if j ∈ ν(i)

0 otherwise
(54)

which makes it clear that Hij is nonzero only if j ∈ κ̄(i) or j ∈ ν(i). Substituting Eq. 54
into Eq. 52 gives

pi = sTi

(

∑

j∈κ̄(i)

Iν(i)sj q̇j +
∑

j∈ν(i)

Iν(j)sj q̇j

)

= sTi

(

∑

j∈κ̄(i)

∑

k∈ν(i)

Iksj q̇j +
∑

j∈ν(i)

∑

k∈ν(j)

Iksj q̇j

)

= sTi

(

∑

k∈ν(i)

∑

j∈κ̄(i)

Iksj q̇j +
∑

k∈ν(i)

∑

j∈ν(i)∩κ(k)

Iksj q̇j

)

= sTi

∑

k∈ν(i)

Ik
∑

j∈κ(k)

sj q̇j . (55)

The step from the second to the third line works as follows:
∑

j∈ν(i)

∑

k∈ν(j) is the sum
over all j, k pairs where j is a descendant of i and k is a descendant of j, whereas
∑

k∈ν(i)

∑

j∈ν(i)∩κ(k) is the sum over all j, k pairs where k is a descendant of i and j is
both a descendant of i and an ancestor of k; but these two sets of pairs are the same.
The step from the third to the fourth line exploits the fact that ν(i) ∩ κ(k) is the set of
all ancestors of body k from i onwards, whereas κ̄(i) is the set of all ancestors of body k
prior to i, so the union of the two sets is κ(k).

Now let vk be the velocity of body k, let hk = Ikvk be the momentum of body k, and
let hν(i) =

∑

k∈ν(i) hk be the total momentum of the subtree beginning at body i. The
velocity of any body in the tree is the sum of the joint velocities between it and the base,
so

vk =
∑

j∈κ(k)

sj q̇j . (56)
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We can now further simplify Eq. 55 as follows:

pi = sTi

∑

k∈ν(i)

Ikvk = sTi

∑

k∈ν(i)

hk = sTi hν(i) , (57)

which establishes the desired result for the case of a kinematic tree.
If the original system contains kinematic loops then Eq. 51 must be replaced with

the equivalent closed-loop equation, which changes the definition of p. However, Eq. 52
remains valid for any joint i that does not participate in any kinematic loop. As the
loop-closure constraints do not affect any of the other steps, it follows that Eq. 57 applies
also in the case of a joint in a general rigid-body system that does not participate in any
kinematic loop.
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