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A Springy Leg and a Double Backflip
Juan D. Gamba and Roy Featherstone

Abstract—This paper presents a simulation study of a planar
monopod robot’s motion search and control problems. The
robot’s passively spring-loaded prismatic joint in the lower body
(between the foot and the shin) assists it in performing athletic
motions. Systems of this kind can balance on a single point, hop,
and produce complex movements with a suitable control strategy.
We aim to investigate the application of direct orthogonal
collocation (DOC) methods to nonlinear motion search problems
for obtaining the continuity accuracy of using an ODE solver but
exploiting the faster computation and convergence of collocation
methods. Moreover, the presented controller allows the robot to
get up from the ground, move to the ready position, and replicate
the optimized motion (a double backflip) in a dynamic simulation.

Index Terms—Underactuated Robots, Constrained Motion
Planning, Integrated Planning and Control.

I. INTRODUCTION

For acrobats and athletes, the success or failure of a ma-
neuver depends on precise and accurate movements. In this
sense, strategies for finding optimized ways of executing a
task and approaches to implementing them in real systems are
still an open problem in robotics. Launching into a hop without
considering the takeoff velocities can cause head landings or
crashes, as commented in [1]. Additionally, as the motion to
perform is unknown and leads the system to an uncontrollable
state (takeoff), finding the optimal amount of time the robot
needs to achieve takeoff is nontrivial. [2] uses a sequential
optimization approach for finding a launching motion for a
vertical hop with a biped wheeled robot and concluded that
by employing this strategy, it is necessary to manually adjust
the motion duration tak

until finding the best instant, which
is computationally inefficient and tedious. Analogous studies
have been conducted to achieve similar motions. [3] presents a
sequential motion planning method for generating somersaults
on bipedal robots; the authors modified Cassie by adding a
flywheel at the top of its pelvis to amplify its capability to
control the momentum while flying. [4] uses a humanoid robot
model to produce a jump of 16.4 cm height with a robot of
43.5 kg. And, [5] presents a similar work where a simple
control algorithm enables a rigid-leg monopod robot to crouch,
lift off, fly, and land during a single hop.

This paper extends and generalizes the application of the
work presented in [5] for producing hops and balance with
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a monopod robot. This study uses a modified version of
the dynamic software package developed in [6] to obtain
an algebraic representation of the equations of motion for
any robot applied to nonlinear trajectory optimization with
casADI software [7] combined with an implicit integrator
based on orthogonal collocation methods and Legendre-Gauss-
Radau polynomials. A limitation of this approach is that it
requires a continuous dynamical system, and as transitions
between contact and no contact, or between slipping and not
slipping, are discrete events that introduce discontinuities into
the dynamics, it is necessary to split the full motion into a
sequence of three phases (takeoff, flight, and landing), each
having continuous dynamics.

After obtaining the optimized motion, we employ the bal-
ance theory [8] to design the proposed controller, which has
demonstrated its effectiveness on physical systems [9], [10],
[11]. Controllers based on this theory exhibit significantly
faster and more accurate tracking of motion commands at the
actuated joint than an LQR [12], nonlinear [13], and linear [14]
controllers (e.g., see Fig. 12 of [8]). A similar performance
is obtained in [15], [16], where the controller simultaneously
maintains the balance, tracks a command signal, and sup-
presses the vibrations introduced by a passive spring using
only one actuator. In contrast, motions like hopping require
achieving certain dynamic conditions to takeoff rather than
a specific joint configuration. This paper shifts the control
problem to the center of mass (CoM) space following the
commented balance theory to ensure the success of such
motions.

The scope of this study goes beyond [5] and [2], [3] by
introducing a strategy to successfully execute a double backflip
using a planar spring-loaded monopod robot. The decision to
study only a planar system rather than full 3D can be justified
by observing that hopping is a nearly planar activity. It makes
sense to design the robot so that the hopping movement is
planar. The novel contributions of this paper are: (i) The robot
employed is underactuated; we use only a single actuator
to accomplish the entire sequence of movements (one less
than Raibert’s planar hopper [17]). (ii) The robot has actuated
and spring-loaded joints. (iii) We present a highly dynamic
movement requiring substantially different behavior patterns
(balancing, launching, flying, landing), some of which rely
on the spring to achieve high physical performance. (iv) We
demonstrate the applicability of nonlinear multiphase trajec-
tory search strategy with orthogonal collocation methods and
Legendre-Gauss-Radau polynomials to simultaneously find
complex motions, the best passive system parameters, and
the optimal takeoff instant with relatively low computational
cost, fast execution, and high accuracy. (v) Introducing a high-
performance controller to track a given motion at the center
of mass (CoM) level enabling the robot to accurately achieve
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Link Mass Length CoM Inertia at CoM
(i) (kg) (m) (m) (kgm2)
1 0.1 0.2 0.1 0.0006
2 0.4 0.3 0.15 0.006
3 2 0.5 0.33 0.0800

TABLE I
LENGTH AND INERTIA PARAMETERS OF THE ROBOT SHOWN IN FIG.1.

the necessary momentum for performing a desired activity that
requires a takeoff.

II. ROBOT MODEL

The springy-leg robot, shown in Fig.1, is a planar, three-link
mechanism in which links 1, 2, and 3 are the foot, shin, and
thigh, respectively. Table I shows the links’ mass and length
parameters. The symbols mi, li, ci, and Ii appearing below
denote the mass, length, CoM, and rotational inertia about the
CoM, respectively, of link i.

The joint variables vector is q = [q̄t, qt]
⊤, where q̄t =

[qy, qx]
⊤ and qt = [q1, q2, q3]

⊤. qx and qy specify the position
of the foot, and q1, q2 and q3 specify the configuration of the
robot. When all three joints in qt are zero, the leg is vertical,
the leg’s length is l1 + l2, and the thigh is horizontal out to
the right. The positive motion of a revolute joint i (q1 and q3)
rotates link i counter-clockwise relative to link i− 1, and the
positive motion of joint 2 extends the leg (so the actual length
of the leg is l1 + l2 + q2). In Fig. 1, q1 is positive and q3 is
negative. Joint 3 is actuated, and the torque at this joint is τ3.
The force at joint 2 comes from the spring and damper, and
the torque at joint 1 is always zero.

The following dynamic equation governs the system
Hyy Hyx Hy1 Hy2 Hy3

Hyx Hxx Hx1 Hx2 Hx3

Hy1 Hx1 H11 H12 H13

Hy2 Hx2 H12 H22 H23

Hy3 Hx3 H13 H23 H33



q̈y
q̈x
q̈1
q̈2
q̈3

+

Cy

Cx

C1

C2

C3

=


Fy

Fx

0
Fs

τ3

 (1)

where Hij are elements of the joint-space inertia matrix,
q̈y , q̈x, q̈1, q̈2 and q̈3 are the joint acceleration variables,
Cy , Cx, C1, C2 and C3 contain gravity and velocity terms,
Fs = −Ksq2−Dsq̇2, Ks and Ds denote the stiffness and
damping coefficients of the spring. Fy and Fx denote the
ground contact forces along y and x axes, which are zero
when the robot is flying and are calculated by the simulator in
subsection V-C when the foot is in contact with the ground;
for simplicity, these forces are neglected at the controller and
trajectory search phases by imposing that qy and qx are fixed.

The values of Ks and Ds are not initially given but will be
determined by the optimization process.

III. TRAJECTORY SEARCH

Optimization strategies have been extensively used by [18],
[4], [19], [20] for solving motion planning problems. In this
sense, the motion search exercise is solved by employing the
system dynamics commented on in the previous section as the
boundary value problem of a differential-algebraic equation
(DAE). In this sense, the dynamic model explained in equation

Fig. 1. Flying robot model. q3 is negative in this configuration.

(1) is written as an ordinary system equation (ODE) with a
set of constraints b:

q̈ = H−1(τ − C) = f(qt, q̇t, τ3) 0 = b(t, qt, q̇t, τ3), (2)

where q̈ is a nonlinear function of the robot’s state [q, q̇]⊤

and the control input τ3. The main objective of this section
is to find a control profile by evaluating the ODE system and
satisfying the imposed set of boundaries b [21].

In this sense, the motion is divided in k time steps along
t ∈ (0,∞] = [t0, t1, ..., tk]. Consequently, the problem is
implemented as a nonlinear programming problem (NLP) to
facilitate the addition of the following constraints:

• At every time step, the following nonlinear dynamic
equality with a suitable integration method guarantees
that the found motion matches the real system dynamics.

q̇i+1= q̇i+

∫ ti+1

ti

f(qt, q̇t, τ3)dt, qi+1=qi+

∫ ti+1

ti

q̇ dt (3)

• To bound the operating space of the joint positions
due to the robot’s kinematics, we implement mechanical
inequalities qmin ≤ q ≤ qmax. In the presence of
motors at the joint’s axis, the joint’s velocity can also
be restricted to a maximum value |q̇| ≤ q̇max.

• Initial state equalities/inequalities ensure that the optimal
solution starts at a specific value or under a specified
region.

• Like initial equalities/inequalities, terminal state equali-
ties/inequalities specify that the solution should finish in
a specific value or under a particular region.

ODE systems can generally be solved using direct and in-
direct techniques. Direct approaches are usually used because
they are simpler to set up and solve [22] than indirect methods,
where it is necessary to construct the adjoint equations and
their gradients to obtain more accurate metric for the solution
[23]. Direct methods split into sequential and simultaneous
methods. Sequential or direct single shooting methods solve
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DMS DOC-LG DOC-LGR
Number of Decision Variables 7505 25505 25505

Number of Constraints 6007 24007 24007
Number of Solver Iterations 45 166 43

Cost Function Value 1.92e+03 1.92e+03 1.92e+03
Execution Time (s) 58.91 70.98 20.16

Time per Iteration(s/it) 1.3091 0.4276 0.4688
Launching Instant (s) 0.8728 0.8728 0.8728

TABLE II
COMPARISON TABLE BETWEEN DMS, DOC WITH LEGENDRE-GAUSS

POLYNOMIAL (DOC-LG), AND DOC WITH LEGENDRE-GAUSS-RADAU
POLYNOMIAL (DOC-LGR).

the ODE model in an inner-loop (simulation), and the dis-
cretized control input τi is updated out of the simulation loop
using an NLP solver. The outer-loop control update can use an
analytical or numeric sensitivity analysis of the ODE model to
calculate the objective function gradient concerning the control
input [24]. These strategies are moderately easy to construct
but require multiple integrations of the ODE system, which
can be computationally costly and inefficient [2].

1) Direct Multiple Shooting (DMS): Between sequential
and simultaneous methods, direct multiple shooting (DMS)
approaches are capable of handling unstable DAE systems
(not guaranteed by sequential schemes [25]). The method
discretizes the control policy and states in k time steps and sat-
isfies the system’s dynamics by imposing the abovementioned
constraints and integrating the system dynamics over each step
i. The integration accuracy of equation (3) will depend on the
integration method chosen. More straightforward integration
techniques like Euler clearly demand less computational effort
than more complex methods like Runge-Kutta or a DAE solver
by compromising the solution’s accuracy [24].

2) Collocation Methods: Direct Collocation Methods
(DCMs), also known as full-simultaneous methods, approx-
imate the continuous functions of the optimization problem in
polynomials. This approach substitutes the integration method
used in DMS by algebraic equality constraints enforced at
the collocation points, which are distributed according to a
first (direct collocation) or high (orthogonal collocation, DOC)
order polynomial between the time steps ti−1 and ti. In other
words, it uses an implicit integrator that satisfies the system’s
dynamics at the collocation points instead of an explicit
integrator. Trapezoidal or Hermite-Simpsons methods with
relatively low-order polynomials are often used to implement
the implicit integrator. As expected, the extra collocation
constraints at every time step i increase the NLP problem
dimension and sparsity, commonly exploited by Modern NLP,
to reach solutions faster. Generally, collocation methods with
higher-order polynomials, such as Legendre-Gauss-Radau,
Legendre-Gauss, etc., can achieve higher accuracy than lower-
order methods, such as linear and cubic splines, Chebyshev
polynomials, etc. By considering the correct sets of orthogonal
polynomials, it is possible to increase the order of accuracy
of the collocation scheme (the result is still an approximation
to the ODE solution) [24]. A more detailed explanation of
orthogonal polynomials is in [26], [27].

3) Performance Comparison: Here we compare the DMS
and DOC methods by producing a leap of 0.5 m with a
launching velocity v0 = 2.0657 m/s between the CoM and the

ground at θ = 0.5916 rads with the acrobot robot used in [5]
using a Lenovo laptop with a Core i7-6500U CPU @ 2.5GHz
and eight gigabytes of RAM. The DMS and DOC methods use
an explicit and implicit 4th-order Runge-Kutta integrator. The
orthogonal polynomials Legendre-Gauss (LG) and Legendre-
Gauss-Radau (LGR) with three collocation points were used
with the DOC method. The motion was implemented using
CasADI and MATLAB and then solved using the IPOPT filter
[28] and the default MA27 solver.

Table II shows how the number of decision variables in
the DOC methods increased more than three times, and the
number of constraints increased almost four times compared
with the DMS approach. As expected, using an implicit
solver increases the NLP problem size in DOC strategies. At
the end of the optimization, the three approaches found the
same launching motion and minimized cost at the end of the
optimization. The DMS strategy took less time to find the
optimal solution than DOC-LG, but the DOC-LG took three
times more iterations than the DMS approach. On average,
each DOC-LG iteration took three times less than the DMS
iteration. The DOC-LGR approach stands out as the fastest
method due to its superior stability properties compared to
DOC-LG in applications of this nature. It efficiently solves
the problem with a reduced number of iterations, resulting in
faster convergence [24], [29].

IV. MULTI-PHASE OPTIMIZATION

Our strategy starts by splitting the entire motion into three
phases (launch, flight, and landing). Then, we formulate a
multiphase-optimization problem by concatenating the three
nonlinear programming (NLP) problems (one for each stage)
to obtain the entire motion profile for a double backflip with
a spring-loaded monopod robot.

The three phases were solved using the direct orthogonal
collocation method with Legendre-Gauss-Radau polynomials
and seven collocation points. In this sense, the problem is
formulated in each stage by specifying the state variables that
describe the system’s continuity during the motion. Then, the
control variables are the parameters that need to be optimized
for solving the motion (actuation profile τ3(t), spring stiffness
Ks, and damping Ds coefficients). The total task duration to
perform the takeoff (tak

) and flight (tbk ) are also added as
control variables. The task steps k is fixed in this sense, but

the sample times
tak

k
,
tbk
k

can vary with the phases duration
tak

and tbk .
All the NLP problems were implemented using Matlab with

the software package CasADI [7].
Launching and landing phases minimize the following ob-

jective function

J(t) =

tk∫
0

τ3(t)
2 dt. (4)

A. Launch Phase

The robot configuration when the robot takes off the ground
is named the launching state. This state correlates the CoM’s
linear velocity to the coordinate frame and the centroidal
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angular momentum cL, which describes the angular momen-
tum of the robot about the CoM. The desired takeoff linear
velocities along the x and y can be obtained using parabolic-
based physics equations for executing a leap; calculating the
centroidal angular momentum is more complex because it is
necessary to consider the robot’s motion during the flight
and the desired landing configuration. When the robot is
flying, based on the conservation of momentum law, the
robot can only modify its rotational velocity by varying the
mass distribution about the CoM (given that the rotational
momentum is constant during this phase). In this context,
a successful landing depends on the launch instant and the
change of centroidal rotational velocity during the flight.

1) Formulation: This motion was implemented using ak =
600 steps, Ta = [0, t1, ..., tak

]. It starts with the robot balanc-
ing on the ground with zero velocity and finishes when it’s
about to fly. The joint accelerations are obtained by solving
equation (1), assuming that the foot is attached to the ground
via a revolute joint, qx and qy are zero during the whole
motion.

subject to:
0.2 sec ≤ tak

≤ 3 sec, (5)

1 Nm−1 ≤ Ks ≤ 5×104 Nm−1, (6)

0 Nsm−1 ≤ Ds ≤ 5×104 Nsm−1, (7)
initial constraints:

cx(0) = ċx(0) = ċy(0) = 0, (8)
Fs(0) = C2(0), (9)

loop constraints:
qmin ≤ qt(i) ≤ qmax, (10)
|τ3(i)| ≤ 50 Nm, |Fx(i)| ≤ 15 N, (11)
0 N ≤ Fy(i) ≤ 350 N, (12)

q̇t(i+ 1)=

∫ ta(i+1)

ta(i)

q̈t(t)dt, qt(i+ 1)=

∫ ta(i+1)

ta(i)

q̇t(t)dt, (13)

terminal constraints:
1 ms−1 ≤ ċy(ak) ≤ 10 ms−1, Fy(ak) = 0, (14)

The spring parameters are added to the NLP problem in
equations (6) and (7). The robot’s initial conditions are in
equations (8) and (9), where the CoM position c along the
x axis, cx, and the CoM’s velocity ċ along the y and x axes,
ċy and ċx have to be zero, and q2 in its rest position. For
simplicity, the loop constraints are only imposed at every step
k and not at the collocation points. The joints position q are
bounded (eq. (10)) based on the physical limits of the robot,
where qmin = [0,−0.2,−π/3]⊤ and qmax = [4π/9, 0, π/3]⊤

in
[
rad m rad

]⊤
. The joint velocities q̇i are assumed to

be unbounded. (11) constrains the actuation torque τ3. Forces
Fx and Fy are constrained in equation (12) to ensure that the
robot does not slip and not requires an unrealistic vertical force
to takeoff. The system dynamics commented in equation (1)
and the system’s continuity are imposed as a constraint in (13).
Finally, the terminal condition is to have a vertical velocity ċy
bigger than 1m/s and zero vertical force at the ground contact
point (Fy).

B. Flight Phase

The flight phase is implemented in bk = 200 steps,
Tb = [tak

, tak+1, ..., tbk ] and starts when the robot loses
contact with the ground until the touchdown. In this phase,
the robot has no contact with the ground and has a mobile
base rather than a fixed one. Moreover, during this phase,
the robot can only modify its rotational velocity by changing
its inertia (according to the conservation of momentum law).
Like athletes, the robot should extend its leg at the takeoff
and the touchdown instants and fold itself during the flight to
achieve the necessary rotational velocity to perform the double
backflip. The task is initialized with the last state of the takeoff
phase q = [0, 0, qt(ak)] and q̇ = [0, 0, q̇t(ak)].

J(t) =

T∫
0

τ3(t)
2 + pE(t)

2 dt. (15)

subject to:
0.3 s ≤ tbk − tak

≤ 1.5 s, (16)
loop constraints:

qmin ≤ q(i) ≤ qmax, (17)
|τ3(i)| ≤ 50 Nm, (18)

q̇(i+ 1) =

∫ tb(i+1)

tb(i)

q̈(t)dt, q(i+ 1) =

∫ tb(i+1)

tb(i)

q̇(t)dt, (19)

terminal constraints:
− 10 ms−1 ≤ ċy(bk) ≤ 0 ms−1, (20)
qy(bk) = 0 m, (21)
π/6 + 4π rad ≤ q1(bk) ≤ 4π/9 + 4π rad, (22)

The objective function (15) is similar to (4) with an additional
term pE , which denotes the gravitational potential energy of
the robot to obtain the motion with the smallest height. The
flight duration is constrained in equation (16); in the loop
constraints, the joints position q are delimited in equation
(17), where qmin = [−2, 0,−π/2,−0.2,−π/3]⊤ and qmax =

[2, 15, π/2+4π, 0.2, π/3]⊤ in
[
m, m, rad, m, rad

]⊤
, and the

joints velocities q̇ are assumed to be unbounded. The actuation
torque τ3 is bounded in equation (18). The system dynamics
commented in equation (1) and the system’s continuity are
imposed as a constraint in (19). The terminal condition at the
touchdown (eq.(21)) is to have a negative vertical velocity ċy
(eq.(20)) and to have done a double backflip (eq.(22)).

C. Landing Phase

At this phase, the robot needs to go back to balance after the
touchdown, requiring the minimum effort (eq.(4)). The task is
implemented in ck = 300 steps, Tc = [tbk , tc1 , ..., tck ]. This
NLP problem uses the same loop constraints imposed on the
launch phase, from equation (10) to (13), with a modification
at the bounds of joint one 4π rad ≤ q1 ≤ 4π/9 + 4π rad.

The phase starts at the touchdown, where we assume a plas-
tic collision between the ground and the foot, the momentum
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generated by q̇x and q̇y is mapped to the robot joints qt as:

˙̄qt(tbk)=

H11 H12 H13

H12 H22 H23

H13 H23 H33

−1Hy1 Hx1

Hy2 Hx2

Hy3 Hx3

[q̇y(tbk)
q̇x(tbk)

]
(23)

then, the contribution ˙̄qt(bk) due to q̇x and q̇y is added to the
actual velocity of the joints q̇t = ˙̄qt(bk) + q̇t(bk).

subject to:
0.2 s ≤ tck − tbk ≤ 3.5 s, (24)

terminal constraints:
|q̇t(ck)| = 0, (25)
|cx(ck)| ≤ 1 mm, (26)

The task ensures that motions found in the previous phases
are a solution for a smooth landing. In this sense, this
NLP problem forces the optimizer to find the optimal spring
parameters to minimize the impact force within the imposed
mechanical limits (a spring compression of less than l1).

D. Optimization Results

The full motion was solved using the IPOPT filter and
MA86 solver from the Harwell Subroutine Library [30],
which substantially reduces the execution time by solving the
problem using multiple cores compared with the default solver
MA27.

We started by finding a feasible trajectory for the takeoff
and flight phases satisfying the imposed constraints. Then, we
added the landing phase to the NLP problem to obtain the
complete solution.

The found takeoff motion lasts 2.786s, the flight
0.821sec, and the landing 0.585sec. During the mo-
tion, the robot starts at a crouch configuration qt =
[0.204rad,−0.044m,−1.046rad] with zero velocity, then it
tips itself backward (negative x direction) and forwards to
launch into a double back-flip with a CoM position c =
[−0.013, 0.62] in m and a velocity of ċ = [0.677, 3.766]
in ms−1 and a centroidal angular momentum of cL =
1.568kgm2s−1, during the flight the robot’s CoM reaches
cy = 1.4668m height. The robot lands with a CoM position
c = [0.043, 0.41] in m and a velocity of ċ = [0.677,−4.288]
in ms−1 and the same centroidal angular momentum, and
stabilizes itself in a balanced configuration with q3 = −0.522.
At the touchdown, the CoM had a lower height than the
takeoff, which explains the small increment in the magnitude
of ċy .

We have noticed that the spring parameters play a significant
role in the landing phase for reducing the impact force
generated after the touchdown and minimizing the required
actuation effort to bring the robot back to balance. The spring-
loaded monopod robot behaves similarly to a variable spring
system, and it isn’t easy to obtain its parameters analytically,
as presented in [31]. The optimal spring parameters found
with the optimization were Ks = 519.046Nm−1 and Ds =
33.755Nsm−1.

The optimal spring parameters also depend on the actuator’s
τ3 ability to produce fast torque changes for efficiently storing

and releasing the elastic energy produced by a given movement
or impact while maintaining the robot balance.

V. TRAJECTORY TRACKING

The controller employed to track the optimized launching
motion is based on the balance theory introduced in [15]. The
controller is modified to control the CoM velocity ċx along
the x-axis by driving bL̈ through a tracking task.

A. Balance Theory

This section briefly introduces the analysis presented in
[15]. The strategy assumes that the foot neither slips nor
loses contact with the ground (qy = qx = 0) and computes
a linearized model of the robot to obtain a virtual output
b

...
L = −mgc̈x that later is transformed in τ3 using the system

dynamics introduced in (1).
The states vector of the linearized model is defined as

[bL̈,b L̇,b L, q3], where bL = H11 q̇1 +H12 q̇2 +H13 q̇3 is the
angular momentum of the whole robot about the support point,
which is proved in the appendix of [8]. bL̇ = −mg cx is the
moment of gravity about the support, where m is the total mass
of the robot, g is the acceleration due to gravity (a positive
number), and cx is the x coordinate of the robot’s CoM.

By assuming that qy and qx are zero during the whole task,
it is possible to link the joint-space dynamics with the motion
of the CoM, which leads us to:[

q̇1
q̇3

]
=

1

g D

[
−g Hx3 −H13

g Hx1 H11

] [
bL
bL̈

]
(27)

where D = Hx1 H13 −H11 Hx3 assuming that the matrix is
invertible (which it will be if the robot is physically capable
of balancing [8]). Consequently q̇3 can be expressed as

q̇3 = Y1
bL+ Y2

bL̈ (28)

where
Y1 =

Hx1

D
, Y2 =

H11

g D
(29)

Y1 and Y2 vary with configuration and can be expressed as
simple functions of two physical properties of the mechanism:
its time constant of toppling, Tc, which measures how quickly
the robot falls if the controller does nothing, and its velocity
gain [32], which measures the effect on the center of mass
(CoM) velocity of a unit change in the velocity of the actuated
joint.

B. Launch Controller

The system introduced in [15] is modified by controlling a
motion (bL̈c) in the CoM space instead of the actuated joint
q3 space, given that we are interested in controlling the robot’s
CoM to takeoff. After modifying the system’s plant, the open-
loop transfer function is

y(s) =
1

s
u(s). (30)

In this form, the system does not present any zeros in the left
semi-plane as commented in [8]. The system behaves like a
simple integrator, and to ensure that the tracking error beL =b
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L̈c −b L̈ goes to zero during the takeoff motion, the control
law u is computed as:

b
...
L := u = −kdd(

bL̈−b L̈c) +
b

...
L c, (31)

where bL̈c denotes the desired signal to be tracked, and as the
launching motion is known, it is possible to obtain b

...
L c by

differentiating bL̈c. Then, the closed-loop system looks like
this:

b
...
L

bL̈
bL̇
q̇3

=

−kdd 0 0 0
1 0 0 0
0 1 0 0

Y2(q) 0 Y1(q) 0



bL̈
bL̇
bL
q3

+

kdd

bL̈c+
b

...
L c

0
0
0

 (32)

and the transfer function of the closed-loop system is:

bL̈(s) =
kdd(1 + s/kdd)

kdd + s
bL̈c =

b L̈c (33)

which demonstrates that by only imposing a positive gain kdd
it is possible to drive bL̈ →b L̈c.

To recover the robot from the ground and at the touchdown,
the control law u was substituted by:

b
...
L := kddL̈+ kdL̇+ kLL+ kqq3 , (34)

The feedback gains are obtained via pole placement as

kdd = −a3 kd = −a2 + a0Y2/Y1

kL = −a1 kq = −a0/Y1 ,
(35)

where

a0 = λ1λ2λ3λ4

a1 = −λ1λ2λ3 − λ1λ2λ4 − λ1λ3λ4 − λ2λ3λ4

a2 = λ1λ2 + λ1λ3 + λ1λ4 + λ2λ3 + λ2λ4 + λ3λ4

a3 = −λ1 − λ2 − λ3 − λ4

(36)

and λ1, . . . , λ4 are the chosen values of the poles [33].

C. Simulation

In this simulation, we use the ode23t solver from MATLAB
with relative tolerance set to 10−6, and other parameters are
chosen at their default values. Although the controller and
launch optimization assume that the foot never loses contact
nor slips with the ground, in the simulation, we have included
the ground-contact model described in [34]. Contact forces
acting on the foot in the normal and tangent directions are

Fy = max(0,Knz
3/2 +Dnz

1/2ż),
Fx = clip(Ktz

1/2u+Dtz
1/2u̇,−µFy, µFy),

(37)

where z and u are the ground compression and shear de-
formation, µ is the coefficient of friction, Kn and Dn are
the normal, and Kt and Dt are the tangential stiffness and
damping coefficients. The function clip(a, b, c) returns the
value of a clipped to b and c. The parameter values used in
the simulations are

Kt = 12.7× 106 Dt = 3.1× 105 µ = 1
Kn = 8.5× 106 Dn = 3.1× 105

(38)

which are consistent with a hard floor and a high-friction hard
rubber foot.
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Fig. 2. Evolution of the robot’s CoM’s velocity ċ, and centroidal angular
momentum cL before the takeoff. The left-side scale applies to ċx and ċy
and the right-side scale applies to cL.

In the simulation, the springy-leg robot starts in an upright
position laying on the ground qt = [−π/2rad, 0m, π/2rad],
it recovers to a balanced position by using a PID controller
to move the actuated joint q3 to −1.451 rad and uses the
balance controller introduced in [15] with all the poles at
λi =−1/Tc rad s

−1 to balance the robot and get the crouch
launching configuration with zero velocity. Then, the gain
kdd = 60 is set for tracking the takeoff motion L̈c with the
control law introduced in equation (31). During the flight, the
following controller is used

τ3 = C3 +H33 (kp e+ kd ė), (39)

where C3 and H33 were obtained from (1), e = qc − q3, qc
denotes the desired joint position, and kp and kd are positive
gains. Once the robot touches the ground, the balance con-
troller [15] is used to bring it back to balance with the poles at
λ1..3=−10 and λ4=−1/Tc without following any trajectory.
The whole motion can be seen in the accompanying video.
The sequence of movements was obtained by employing the
optimization strategy described in section IV. The system’s
evolution is presented from figures 2 to 7 in colored lines;
the pale gray lines denote the optimized solution found by the
optimizer, and all other lines show the simulation results.

In the figures, it is possible to observe that the strategy
can accurately track and reproduce the motion obtained from
the optimizer during the launch and flight phases, which cor-
roborates the precision of the orthogonal collocation method
employed during the optimization and that the controller is
suitable for performing this kind of motion. We tried to execute
the launch motion directly using the torque profile obtained
from the optimization without any controller. However, the
robot failed to achieve the liftoff by falling out of balance. The
torque profile from the optimizer had an average difference of
%4.37 compared with the torque profile obtained using the
proposed controller.

The launch motion starts at t = 5.5s after successfully
recovering from the ground and achieving the ready configu-
ration to takeoff. Figure 2 shows the tracking results during
the takeoff motion. Figure 3 shows a performance comparison
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Fig. 3. Performance comparison between the proposed controller(blue), a PD
controller (black) and Azad’s controller (red) [5].

5.5 6 6.5 7 7.5 8 8.5

sec

-0.1

-0.09

-0.08

-0.07

-0.06

-0.05

-0.04

-0.03

m

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

m
s

-1

Fig. 4. Evolution of the spring-loaded joint position q2 and velocity q̇2 before
the takeoff. The left-side scale applies to q2, and the right-side scale applies
to q̇2.

between different controllers; the proposed controller in blue
had an average error of 1% in achieving the desired launch
found by the optimizer, the PD controller (eq. (39)) had a
16.33% and the controller presented in [5] obtained 12.76%.
Figure 4 shows the evolution of the spring, where it stores a
maximum of 2.218J just before the robot leaves the ground.
At the end of this phase, the controller had a tracking error of
1.386% at ċx, 0.398% at ċy and 1.206% at cL related to the
takeoff instant obtained from the optimization.

At t = 8.286s, the robot is flying and can only modify the
leg’s position q3 and velocity q̇3. Figure 5 shows the evolution
of joint q3 during the flight and the position of the CoM along
the x and y axes related to the takeoff point.

At t = 9.101s, the robot touches the ground after per-
forming the double backflip. At the end of this phase, the
controller had a tracking error of 0.38% at ċx, 0.146% at ċy
and 1.163% at cL related to the touch-down instant obtained
from the optimization. Figure 6 shows the evolution of the
CoM’s position, velocity, angular momentum related to the
contact point, and the q3 position. Figure 7 shows the evolution
of the spring-loaded joint q2 at the impact. The spring absorbed
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Fig. 5. Motion of the robot’s CoM and actuated joint q3 during the flight.
The left-side scale applies to cx and cy and the right-side scale applies to q3.
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a maximum of 5.816 J, and the balance controller successfully
released most of this energy while keeping the robot’s balance.

VI. CONCLUSION

This work presented a scalable optimization framework for
a spring-loaded monopod robot performing a double backflip.
The event-based optimization approach is the most suitable for
tasks with unknown motion duration, like hopping.

The ability of the robot to store and use elastic energy
has demonstrated a substantial increase in performance for
achieving a faster and more complex takeoff and reducing
the impact force at landing. This strategy is still valid for
a continuous hop task for recycling energy from one hop
to another. Moreover, the optimization framework is easily
adaptable to different robots by modifying the robot model.
Extra equations depending on the system’s dynamics can also
be implemented using the algebraic representation obtained.

The proposed strategy succeeded in performing a double
backflip with the spring-loaded monopod and significantly
reduced the tracking errors obtained in [5] for producing
a takeoff motion, which is crucial for performing complex
movements.

On the other hand, the controller also demonstrated the
ability to accurately drive the CoM’s velocity and centroidal
angular momentum to achieve the necessary conditions to
takeoff successfully and perform the double backflip. The
spring parameters (according to [31]) also played an essential
role in reducing the impact force at the landing to achieve a
smooth motion while recovering the fixed balance position.
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