
Computational Robot Dynamics

Part 3: Improving Efficiency

Roy Featherstone

© 2022 Roy Featherstone

2

Contents

efficient spatial arithmetic,

simplifying the model, and

symbolic simplification.

Recursive algorithms are already highly efficient; but there are
a few things that can be done to implement them in the most
efficient way. We shall look at these three:

3

6x6 Matrices Versus Compact Classes

In a matrix-oriented environment it makes sense to represent
rigid-body inertias and Plücker coordinate transforms using 6x6
matrices. This approach is simple and easy, but computationally
inefficient.

The cost of an l × m × n matrix multiplication is lmnm + l(m−1)na.

floating-point
multiplication

floating-point
addition or
subtraction

So a 6x6x6 multiplication costs 216m+180a.

4

6x6 Matrices Versus Compact Classes

A solution to this problem is to store these quantities in classes
(or data structures) equipped with a set of methods (functions)
that implement efficient versions of each arithmetic operation.

6x6 matrix class or data structure
that represents it

4

6x6 Matrices Versus Compact Classes

A solution to this problem is to store these quantities in classes
(or data structures) equipped with a set of methods (functions)
that implement efficient versions of each arithmetic operation.

6x6 matrix class or data structure
that represents it

an object of type 'rbi', having
fields called 'm', 'h' and 'I', in
which are stored the scalar
m, the vector h and the lower
triangle of the symmetric 3x3
matrix I.

an object of type 'plx'
having fields called 'E'
and 'r' in which are
stored the matrix E
and the vector r.

5

6x6 Matrices Versus Compact Classes

These classes are more compact (i.e., they occupy less
memory) than a 6x6 matrix.

6x6 matrix

Object Size

36

12

10

('size' is the number of floating-point numbers in the object)

plx(...)

rbi(...)

6

6x6 Matrices Versus Compact Classes

However, their main advantage is the opportunity to implement
efficient versions of common spatial arithmetic operations.

operation
computational cost

6x6 matrix efficient

(this is not a complete list)

7

Some Examples

Operation:

8

Some Examples

Operation:

9

Exploiting Type Sensitivity

Many programming languages allow a function to perform
different actions according to the types of its arguments.

plx X = ...
M6vec v1, v2=...
F6vec f1, f2=...
rbi I1, I2=...
v1 = X.apply(v2);
f1 = X.apply(f2);
I1 = X.apply(I2);

For example, a function to apply a Plücker transform can be
written in such a way that it uses the correct transformation
rule for each type of object.

10

'apply' and 'invapply'

The special form of the Plücker transform matrix means that it is
never necessary to compute explicitly its inverse. Instead, one
defines two functions, 'apply' and 'invapply':

X.apply(...)

X.invapply(...)

apply the coordinate transform described by X to the
argument

apply the inverse of the coordinate transform described
by X to the argument

11

'apply' and 'invapply'

X.apply(v):

X.invapply(v):

12

Simplifying the Model

Infinitely many different rigid-body systems
have the same equation of motion.

Therefore it is usually possible to replace a given system model
with a simpler one having the same equation of motion.

In this context, 'simpler' means having fewer nonzero
parameters, which can reduce the cost of calculating the
equation of motion.

13

Example: Adding Point Masses

Suppose that joint i is revolute.

joint i

body i
body λ(i)

P

This means that any point on the
joint axis is fixed both in body i and
in body λ(i).

14

Example: Adding Point Masses

Suppose that joint i is revolute.

joint i

body i
body λ(i)

P

This means that any point on the
joint axis is fixed both in body i and
in body λ(i).

Now suppose that we add a point
mass m to body λ(i) at P, and a
corresponding point mass −m to
body i, also at P.

15

Example: Adding Point Masses

Suppose that joint i is revolute.

joint i

body i
body λ(i)

P

This means that any point on the
joint axis is fixed both in body i and
in body λ(i).

Now suppose that we add a point
mass m to body λ(i) at P, and a
corresponding point mass −m to
body i, also at P.

These point masses cancel, and therefore have no effect on the
equation of motion; but both body i and body λ(i) now have
different inertias.

16

Example: Adding Point Masses

Suppose we set m = mi (the mass of
body i). The effect is to zero the mass
of body i.

joint i

body i
body λ(i)

P

17

Example: Adding Point Masses

Suppose we set m = mi (the mass of
body i). The effect is to zero the mass
of body i.

joint i

body i
body λ(i)

P

If we do this at every revolute joint
in the system, starting at the leaves
and working towards the root, then
most or all of the bodies will have
zero mass.

18

Example: Adding Point Masses

Suppose we set m = mi (the mass of
body i). The effect is to zero the mass
of body i.

joint i

body i
body λ(i)

P

If we do this at every revolute joint
in the system, starting at the leaves
and working towards the root, then
most or all of the bodies will have
zero mass.

If we know that a body has zero
mass then we can simplify the
operations that use its inertia.

19

Other Uses

Techniques like these can improve the computational efficiency
of dynamics calculations by around 10–20%, but they also have
other uses. For example,

allow the analyst to use simpler equations, or generalize a
result; or

show the designer how to change a design without altering
its dynamics; or

improve the effectiveness of symbolic simplification (which is
the next topic . . .).

20

Symbolic Simplification

In robot dynamics, the term symbolic simplification refers to the
automatic production of computer source code that implements
customized versions of general dynamics calculations.

general
dynamics

code

system model
data structure

inputs
outputs

custom
dynamics

code

subset of model
parameters

outputs
inputs

(optional)

21

Symbolic Simplification

Symbolic simplification exploits the fact that many of the
parameters in a practical system have special values, like zero
or pi/2. This allows many calculations to be simplified.

Example: product of rotation matrix E with vector v.

general case special case: pi/2 rotation

E11

E21

E31 E32 E33

E22 E23

E13E12 v1
v2
v3

v1
v2
v3

1

1

−1

0 0

00

0 0

cost: 9m+6a cost: 0m+0a

22

Symbolic Simplification

The symbolic simplification process works approximately like this:

system
model

description

collection
of dynamics
algorithms

symbolic
executer

list of
assignment
statements

simplifier

code
generator

custom
source
code symbolic simplifier

