Computational Robot Dynamics

Part 4: Forward Dynamics —
The Composite Rigid Body Algorithm
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The simplest way to calculate the forward dynamics of a kinematic
tree is via the joint-space equation of motion:

Hgq+C=1T1

where H is the joint-space inertia matrix and C is the joint-space bias
force (the force needed to produce zero acceleration).

This is a 3-step process:

1. Calculate C
2. Calculate H

3. Solve Hg=7—C for q



1. Calculate C
We can already do this using the RNEA:
if  H{G+ C =7 =1D(model,q,q,q, )
then C =ID(model,q,q,0, f.)

2. Calculate H
The best method is the composite-rigid-body algorithm (CRBA)

3. Solve Hg=1—C for q

Use a factorization that exploits branch-induced sparsity



Composite-Rigid-Body Algorithm

A robot's kinetic energy can be expressed in joint space as

N N
T=34"Hq=35) » q Hyq,
i=1 j=1
but it is also the sum of the kinetic energies of the bodies:

N
_\ L
= 2
k=1
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We can obtain a formula for H by equating these two expressions.



Composite-Rigid-Body Algorithm

Substituting v = > ;.. k) Sig; into 1" = S svl Ivy, gives
N

T=> (> Siq;) I > S;4)

k= 1er(k) jer(k)

N
=32 2 2. @S LS4,

k=1ier(k) jer(k)

On comparing this with the expression for 7' in terms of H we can
see that

Hj;= ) 8IS,

kev(i)Nv(y)



Composite-Rigid-Body Algorithm

cinto T'=3Y,_, sv; Iyvy, gives

The sum over all triples

i,j,k such that both joint i S.q.
and joint j support body & Z 19;)

Y/
=35> )., D @

The sum over all triples i,j,k
SJ such that body  is supported
by both joint i and joint j

On comparing this with the expression for 7' in terms of H we can
see that

Hj;= ) 8IS,

kev(i)Nv(y)



Composite-Rigid-Body Algorithm

Substituting v = > ;.. k) Sig; into 1" = S svl Ivy, gives

N
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1er(k) jer(k)

N
=32 2 2. @S LS4,

k=1ier(k) jer(k)

(D Sia;) (Y Si;)

On comparing this with the expression for 7' in terms of H we can

see that

Hj;= ) 8IS,

kev(i)Nv(y)
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Composite-Rigid-Body Algorithm
From the definition of the sets v(i) it follows that
C v(i) ifiev(y)

v(i)Nv(j) = v(j) ifjev()
)  otherwise

\

( S'ITS; if i € v(j)
So Hyj;= » S/ILS; H;; = S'ISS; ifjev()
kev(i)Nv(y) § 0 otherwise

where I, = Z]El/(z) I, is the inertia of a composite rigid body
consisting of all of the bodies in the subtree v(i). It can be computed

recursively using
=L+ >» I;

Jen(t)



Basic Algorithm

I+ZIC

Jeu(7)

[ S, I7S;
T yc

0

if i € v(j)
if 7 € v(i)
otherwise

Algorithm in Body Coordinates

=I;+ ) 'X/IJ'X,
jen(?)

NOF, = 20X IF, ('F; = I7S;)

(IF'S; ificv())
Hyj=¢ H; ifjeuv(i)
L 0 otherwise




Pseudocode Algorithm in Body Coordinates

H=0

for . =1 to N do | ,
‘=1, =IL+) X'I/X,

end jEn(i)

for =N to 1 do

if A\(7) # 0 then | AG) AG) v 7 Z, )
Lo =T+ OX X, =& (=4S

end
Z::IgTF (F'S; if i€ v())
jag Hyj=¢ H; ifjeuv(i)
while \(j) # 0 do .0 otherwise
F=*0X*F
J = A0J)
H;; = F_S,
Hj; = H;;
end

end



Matlab Code

function [H,C] = HandC( model, q, qd, f_ext )

IC = model.I;

for i = model.NB:-1:1 iv T A1)y
if model.parent (i) ~= 0 )KACO - )Ké
IC{model.parent (i)} =
end
end

H = zeros (model.NB); main Ioop broken

for i = 1-model NB into two, and loop
or i = l:model. order reversed you can see here a

;1(1_=_)IC£i;{f}§{i-};h. few deviations from
T TR ’ the pseudocode

J =21

while model.parent(j) > O
fh = Xup{j}' * fh;
jJ = model.parent (j);

IC{model .parent (1)} + Xup{i}'*IC{i}*Xup{i};

L o
11121_, ?; fl{(i} | 7 missing transpose:

i) = ,3); . ,

ond ’ ] scalars (1x1 matrices) are symmetric

end



Branch-Induced Sparsity

S'IFS; ificuv(y)
H;; =< S'ISS; ifjecv(i)
/ C @ otherwise
This zero means that H;; will always be zero whenever : and j are
on separate branches. So the presence of branches in the tree

causes a pattern of permanently zero-valued elements in H.
We call this pattern branch-induced sparsity.

We can exploit this sparsity to reduce the cost and complexity
of solving the equation of motion.



Sparsity Patterns

Ly

= nonzero submatrix or element




Sparse Factorization

4 5 6 7 If we factorize H into L' L instead
of the usual L L' then the sparsity
5 3 pattern is preserved in the factors.

H — L' L




Sparse Factorization

function LTDL(H,A) factorize H in situ
fork =nto1ldo
i = Nk) ~—— outer loop runs backwards
while i # 0 do N (this is what makes the function
a = Hri / Hyp, factorize H into L'DL instead of
j=1 LDL")
while j = 0 do o
H;=H;-Hya iInner loops visit only the
7=\ ancestors of &
end (this is what gives the algorithm
Hy,=a its efficiency)
1 = A@)
end ~

end



Sparse Factorization

XX X X X X X
)\()\(7))< X X X X X = nonzero

@ @ X X element

X X -@—— upper triangle is
X X never accessed

X

X

X X

@ @ ®<—k=7

By iterating only over the ancestors of k, the algorithm performs
the least possible amount of work; for example, by updating only
6 elements when k=7 instead of 28 elements.



Exploiting Sparsity
How big are the benefits of exploiting branch-induced sparsity?

e reduction in computational complexity from O(n?3) to O(nd?),
where n is the number of variables and d is the depth of the
free.

e for a typical humanoid or quadruped, the cost of solving the
equation of motion (i.e., solving Hq + C' = 7 for q) is
reduced by approximately a factor of 4.

Note: the composite-rigid-body algorithm automatically exploits
branch-induced sparsity by calculating only the nonzero
elements in H. lts complexity is O(nd).



