
Answer Sheet for

Computational Robot Dynamics 2022

Instructor: Roy Featherstone, Italian Institute of Technology
Website: http://royfeatherstone.org/teaching
c© 2022 Roy Featherstone

Answer Mod1

function Ka = kappa(lam) function Mu = mu(lam)

for i = 1:length(lam) Mu{1} = [];

if lam(i) == 0 for i = 1:length(lam)

Ka{i} = i; Mu{i+1} = [];

else Mu{lam(i)+1} = [Mu{lam(i)+1} i];

Ka{i} = [Ka{lam(i)} i]; end

end end

end

end

function d = depth(lam)

function Nu = nu(lam) for i = 1:length(lam)

Nu = cell(1,length(lam)); if lam(i) == 0

for i = length(lam):-1:1 D(i) = 1;

Nu{i} = [i Nu{i}]; else

if lam(i) ~= 0 D(i) = D(lam(i))+1;

Nu{lam(i)} = [Nu{i} Nu{lam(i)}]; end

end end

end d = max(D);

end end

The line Nu = cell(1,length(lam)); creates a cell array whose elements are empty arrays.

Answer Mod2

(a) A cylindrical joint allows both rotation about and translation along its axis; so it has two
degrees of motion freedom (therefore two joint variables), and it can be regarded as a
combination of a revolute and a prismatic joint in series.

XJ(θ, d) =

[

E 0

−Er× E

]

, E =





1 0 0
0 c s

0 −s c



 , r× =





0 0 0
0 0 −d

0 d 0



 , S =

















1 0
0 0
0 0
0 1
0 0
0 0

















where c = cos(θ) and s = sin(θ). The order of the columns in S is consistent with θ being
the first joint variable and d the second.

1

(b) A helical joint also allows both rotation about and translation along its axis, but this time
the translation is geared to the rotation so that the joint has only one degree of freedom
overall. The translation is simply h times the rotation.

XJ(θ) =

[

E 0

−Er× E

]

, E =





c 0 −s

0 1 0
s 0 c



 , r× =





0 0 hθ

0 0 0
−hθ 0 0



 , S =

















0
1
0
0
h

0

















where c = cos(θ) and s = sin(θ).

(c) A rack-and-pinion joint also combines a rotation with a geared translation, but this time
the translation is at right angles to the rotation axis. To come up with a correct joint
model, one must remember that the rotation centre is not the centre of the pinion but
the line of contact with the rack. As stated in the question, the successor frame has been
placed in the pinion such that its x axis coincides with the central axis of the pinion.
Given this placement, the z coordinate of the line of contact is −r and the y coordinate
is −rθ, both expressed in the predecessor’s coordinate system. (See diagram below.) The
coordinate transform from predecessor to successor coordinates consists of a translation
by rθ in the −y direction followed by a rotation by θ about the x axis:

XJ(θ) =

[

E 0

−Er× E

]

, E =





1 0 0
0 c s

0 −s c



 , r× =





0 0 −rθ

0 0 0
rθ 0 0



 ,

where c = cos(θ) and s = sin(θ). The joint’s motion subspace matrix is a pure rotation
about the line of contact, expressed in successor coordinates. This line is always parallel
to the x axis, but it moves around a circle in the y–z plane as the pinion rolls, so that it
passes through the point (0,−r sin(θ),−r cos(θ)). The formula for S is therefore

S =

















1
0
0
0

−r cos(θ)
r sin(θ)

















.

This is an example of a joint in which S depends on the joint variable; so S is not a
constant in successor coordinates and S̊ 6= 0, where S̊ is the apparent derivative of S
in successor coordinates. spatial_v2 does not support this kind of joint directly. To
improve spatial_v2 so that it did support this kind of joint, it would be necessary to
modify the function jcalc on Slide 12 so that it accepts one extra argument (the joint
velocity variable q̇) and returns one more result (S̊q̇).

2

Answer ID1

function [H,C] = HCcalc(model,q,qd)

qdd0 = 0*qd;

C = ID(model,q,qd,qdd0);

for i=1:model.NB

qdd = qdd0;

qdd(i) = 1;

H(:,i) = ID(model,q,qd,qdd) - C;

end

end

This is by far the simplest way to implement forward dynamics, given a working inverse dynamics
program, but it is inefficient. A better method is to use the composite-rigid-body algorithm.

Answer Effi1

If the modification has been done correctly then the two robots should have the same inverse
dynamics. The only tricky bit is making the two point masses both lie on the joint axis. In link
2 coordinates, the mass has to be positioned at the origin, whereas in link 1 coordinates it has
to be positioned at point (1, 0). Here is some code that will do the job:

m = 1;

rob1 = planar(2);

rob2 = planar(2);

rob1.I{1} = rob1.I{1} - mcI(m,[1;0],0);

rob1.I{2} = rob1.I{2} + mcI(m,[0;0],0);

To check that the two robots have the same inverse dynamics, simply call ID two or three times
using random values for q, qd and qdd and compare the results. If tau1 and tau2 are the
results using rob1 and rob2 then the best way to compare them is to use an expression like
max(abs(tau1-tau2)), which will tell you the largest absolute difference between them. If this
is a number around 10−15 then the difference is due to rounding error and can be ignored.

Answer FD1

λ = [0, 1, 1, 3, 3]. Yes, A does have the same sparsity pattern as L, and L2 is identical to L.
L3 is also identical to L, and the point here is that the sparse factorization algorithms expect
certain elements of the matrix to be zero, but do not require the remaining elements to be
nonzero. Given λ = [0, 1, 2, 3, 4], which is the parent array for an unbranched tree, LTL does not
expect any elements to be zero, and therefore operates on the whole matrix (i.e., it performs a
non-sparse factorization).

3

Answer Sim1

function w = conew(t)

w = 2*sqrt(3)*pi * [-cos(2*pi*t); -sin(2*pi*t); 0];

end

function qd = coneqd(t, q)

w = conew(t);

qd = rqd(w,q);

end

We are told that the cone rolls without slipping, so the instantaneous rotation axis must be the
line of contact. We are also told that the cone revolves once per second around the z axis, starting
on the x axis at t = 0, so the unit vector on the line of contact must be [cos(2πt) sin(2πt) 0]T.
So all that remains is to calculate the magnitude. Referring to the diagram above, the cone can
be regarded as rotating about the z axis with an angular velocity of 2π, while simultaneously
rotating about its own axis with an angular velocity of −4π. This axis is inclined at 30◦ to
the line of contact, and therefore points up and to the right; but the velocity is drawn in the
opposite direction because of its negative magnitude. The sum of these two vectors is

ω = −2
√
3π





cos(2πt)
sin(2πt)

0



 .

In coneqd the only tricky bit is to realise that ω is expressed in the fixed coordinate frame, and
therefore must be the first argument to rqd.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.5

0

0.5

1

q0

q1

q2

q3

The plot of q(t) should look like this. The cone ends at the same orientation at which it began,
although the quaternion has changed sign. Half way through, the cone has made one complete
rotation about its own axis, but only half a rotation about the z axis, and the quaternion has
the value [0, 0, 0, 1], which represents a rotation of π about the z axis.

4

Answer Sim2

function v = conev(t)

w = conew(t);

pos = [0;1;0];

v = [w; cross(pos,w)];

end

function pd = conepd(t, p)

q = p(1:4);

r = p(5:7);

v = conev(t);

w = v(1:3);

vo = v(4:6);

qd = rqd(w,q);

rd = vo - cross(r,w);

pd = [qd;rd];

end

Both of these functions make use of the velocity shift formula

vO = vP +
−−→
OP × ω ,

which expresses the relationship between the velocity of the body-fixed point at O and the
velocity of the body-fixed point at P . To get the correct answer for conev, we place P at the
apex of the cone, so that vP = 0 (because the rotation axis always passes through this point),
which lets us calculate vO as follows:

vO =
−−→
OP × ω , where

−−→
OP =





0
1
0



 .

In conepd the tricky part is to realize that r is tracking the motion of a body-fixed point, and
so ṙ must be the velocity of that point, but the linear part of the spatial velocity is the velocity
of the body-fixed point at the origin. So, in this case, P is wherever r is pointing (which is not
the apex of the cone), and the objective is to calculate vP given vO. So conepd calculates

ṙ = vP = vO −−−→
OP ×ω , where

−−→
OP = r .

In part (c) the plot of the quaternion part of p should be the same as the plot in question
Sim1(c). The plot of the positional part should look like this:

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.5

0

0.5

1

1.5

2

rx

ry

rz

The position begins and ends at (0, 0, 0). Half way through, it has reached the position (0, 2, 0).
This is because the cone has made one complete revolution about its axis, but only half a
revolution about the vertical line through (0, 1, 0), so the body-fixed point originally at the
origin is now on the other side of (0, 1, 0). At the beginning and end of the motion, the point
is moving straight up. At t = 0.25, the cone has made a half revolution about its axis and a
quarter revolution about the vertical line, so the body-fixed point is back in the x–y plane at
coordinates (−1, 1, 0). A similar situation arises at t = 0.75.

In part (d), you should get no motion of r because it is tracking the body-fixed point at the
cone’s apex.

5

Answer Sim3

function a = conea(t)

wd = 4*sqrt(3)*pi^2 * [sin(2*pi*t); -cos(2*pi*t); 0];

pos = [0;1;0];

a = [wd; cross(pos,wd)];

end

As the spatial velocity is expressed in a stationary coordinate system, the spatial acceleration is
simply the time derivative of the velocity:

v̇ =
d

dt

[

ω
−−→
OP × ω

]

=

[

ω̇
−−→
OP × ω̇

]

where
−−→
OP gives the position of the cone’s apex, and is therefore a constant. If you have imple-

mented conea correctly then its integral should indeed be equal to the velocity as calculated by
conev, except for truncation error in the integration process.

6

Answer Sim4

There are several possible answers to this question. One possible model function and one possible
Simulink model are shown below.

function top = spinningtop

persistent memory; % for efficient use with Simulink

if length(memory) > 0 % robot model already exists

top = memory;

return

end

R = 0.05; % radius of top

h = 0.1; % height of CoM above pivot

m = 1; % mass of top

% spatial inertia of top: thin disc of radius R

Itop = mcI(m, [0,0,h], m*R^2*diag([1/4,1/4,1/2]));

top.NB = 3;

top.parent = [0 1 2];

top.jtype = { ’Rz’, ’Ry’, ’Rz’ };

top.Xtree = { eye(6), eye(6), eye(6) };

top.I = { zeros(6), zeros(6), Itop };

top.appearance.base = { ’tiles’, [-0.1 0.1; -0.1 0.1; 0 0], 0.05 };

top.appearance.body{3} = {...

’facets’, 12,...

’cyl’, [0 0 h-0.005; 0 0 h+0.005], R,...

’cyl’, [0 0 0; 0 0 h+0.05], 0.0025 };

memory = top; % remember for subsequent calls

end

Interpreted

MATLAB Fcn

FDab(spinningtop,

u(1:3),u(4:6),[0;0;0])

1

s

Integrator

1

s

Integrator1

qout

To Workspace

qdd qd q

The initial position was set to [0;0.5;0] and the initial velocity to [0;0;1000]. Clearly, other
initial values will also work. The resulting motion is not smooth: the axis of the top wobbles as
the top precesses. This is not an error or an inaccuracy. The wobble is a real part of precession
motion.

7

