
Computational Robot Dynamics

Part 4: Forward Dynamics ---
The Composite Rigid Body Algorithm

Roy Featherstone

© 2021 Roy Featherstone

2

The simplest way to calculate the forward dynamics of a kinematic
tree is via the joint-space equation of motion:

where H is the joint-space inertia matrix and C is the joint-space bias
force (the force needed to produce zero acceleration).

This is a 3-step process:

1.

2.

3.

Calculate

Calculate

Solve for

3

1.

2.

3.

Calculate

Calculate

Solve for

We can already do this using the RNEA:

if

then

The best method is the composite-rigid-body algorithm (CRBA)

Use a factorization that exploits branch-induced sparsity

4

Composite-Rigid-Body Algorithm

A robot's kinetic energy can be expressed in joint space as

but it is also the sum of the kinetic energies of the bodies:

We can obtain a formula for H by equating these two expressions.

5

Composite-Rigid-Body Algorithm

On comparing this with the expression for T in terms of H we can
see that

Substituting givesinto

5

Composite-Rigid-Body Algorithm

On comparing this with the expression for T in terms of H we can
see that

Substituting givesinto
The sum over all triples
i,j,k such that both joint i
and joint j support body k

The sum over all triples i,j,k
such that body k is supported
by both joint i and joint j

5

Composite-Rigid-Body Algorithm

On comparing this with the expression for T in terms of H we can
see that

Substituting givesinto

6

Composite-Rigid-Body Algorithm

From the definition of the sets ν(i) it follows that

So

consisting of all of the bodies in the subtree ν(i). It can be computed
recursively using

where is the inertia of a composite rigid body

7

Basic Algorithm Algorithm in Body Coordinates

8

Pseudocode Algorithm in Body Coordinates

9

Matlab Code

function [H,C] = HandC(model, q, qd, f_ext)

IC = model.I;

for i = model.NB:-1:1
 if model.parent(i) ~= 0
 IC{model.parent(i)} = IC{model.parent(i)} + Xup{i}'*IC{i}*Xup{i};
 end
end

H = zeros(model.NB);

for i = 1:model.NB
 fh = IC{i} * S{i};
 H(i,i) = S{i}' * fh;
 j = i;
 while model.parent(j) > 0
 fh = Xup{j}' * fh;
 j = model.parent(j);
 H(i,j) = S{j}' * fh;
 H(j,i) = H(i,j);
 end
end

...

you can see here a
few deviations from

the pseudocode

missing transpose:
scalars (1x1 matrices) are symmetric

main loop broken
into two, and loop
order reversed

10

Branch-Induced Sparsity

This zero means that Hij will always be zero whenever i and j are
on separate branches. So the presence of branches in the tree
causes a pattern of permanently zero-valued elements in H.
We call this pattern branch-induced sparsity.

We can exploit this sparsity to reduce the cost and complexity
of solving the equation of motion.

11

Sparsity Patterns

4

1 2

3

1

2

3

4

= nonzero submatrix or element

12

Sparse Factorization

If we factorize H into LTL instead
of the usual LLT then the sparsity
pattern is preserved in the factors.

1

2 3

4 5 6 7

13

Sparse Factorization

inner loops visit only the
ancestors of k

function LTDL(H,λ)
for k = n to 1 do

i = λ(k)
while i ≠ 0 do

a = Hki / Hkk
j = i
while j ≠ 0 do

Hij = Hij - Hkj a
j = λ(j)

end
Hki = a
i = λ(i)

end
end

factorize H in situ

outer loop runs backwards

(this is what gives the algorithm
its efficiency)

(this is what makes the function
factorize H into LTDL instead of
LDLT)

14

Sparse Factorization

By iterating only over the ancestors of k, the algorithm performs
the least possible amount of work; for example, by updating only
6 elements when k=7 instead of 28 elements.

1

2 3

4 5 6 7

X X X X X X X
X X X X
X X X X
X X X
X X X
X X X
X X X

λ(λ(7))

λ(λ(7))

λ(7)

λ(7)

k = 7

upper triangle is
never accessed

X = nonzero
 element

15

Exploiting Sparsity

How big are the benefits of exploiting branch-induced sparsity?

reduction in computational complexity from O(n3) to O(nd2),
where n is the number of variables and d is the depth of the
tree.

for a typical humanoid or quadruped, the cost of solving the
equation of motion (i.e., solving for) is
reduced by approximately a factor of 4.

Note: the composite-rigid-body algorithm automatically exploits
branch-induced sparsity by calculating only the nonzero
elements in H. Its complexity is O(nd).

