
Computational Robot Dynamics

Part 6: Simulation

Roy Featherstone

© 2021 Roy Featherstone

2

Architecture of a Dynamics Simulator

A good dynamics simulator is a hybrid discrete/continuous simulator.

A program of this kind simulates discrete events, which happen at
specific instants in time, and simulates continuous dynamics (via
numerical integration) during the periods between events.

time

continuous dynamics simulation

scheduled events

conditional events

3

Architecture of a Dynamics Simulator

time

continuous dynamics simulation

scheduled events

conditional events

There are two kinds of event:

scheduled events, which happen at specified times, and

conditional events, which happen when specific conditions
are met

3

Architecture of a Dynamics Simulator

time

continuous dynamics simulation

scheduled events

conditional events

There are two kinds of event:

scheduled events, which happen at specified times, and

conditional events, which happen when specific conditions
are met

called zero-crossing
events in Simulink

3

Architecture of a Dynamics Simulator

time

continuous dynamics simulation

scheduled events

conditional events

There are two kinds of event:

scheduled events, which happen at specified times, and

conditional events, which happen when specific conditions
are met

Examples:

making/breaking contact

stick--slip transition
(coulomb friction)

a variable goes into or
comes out of saturation

Examples:

end of simulation

controller (servo)
execution times

4

Architecture of a Dynamics Simulator

Events happen between integration steps. To get the timing right,
the preceding integration step may have to be truncated.

continuous dynamics simulation

scheduled events

conditional events

step
truncated

step

step step step

event

5

Architecture of a Dynamics Simulator

Events happen between integration steps. To get the timing right,
the preceding integration step may have to be truncated.

continuous dynamics simulation

scheduled events

conditional events

This means that

1. integration steps cannot be longer than the shortest servo
cycle time (if any), and

2. integration steps cannot all be the same size.

6

Truncating an Integration Time Step

Because the timing of conditional events is not known in advance,
the simulator must first make a step, then check for these events,
and then shorten or recalculate the step if an event has occurred.

original integration step truncated integration step

collision
event here

7

Handling Events

When an event occurs, the simulator calls an event-handler function.
These functions can do almost anything, but typically they produce
outputs, and/or alter the values of discrete state variables.

A discrete state variable is one whose value changes only when
particular events occur. Examples include

the state variables and outputs of digital filters and digital control
systems,

any signal that is sampled and held, or set and held, such as the
output of a digital-to-analog converter (DAC),

variables that describe discrete aspects of the system being
simulated, such as the number of feet touching the ground.

8

Numerical Integration

The job of a dynamics simulator is to solve the following initial value
problem during the intervals between events.

where

is the vector of continuous state variables,
is the initial time,
is the value of at the initial time, and
is a function incorporating all of the continuous dynamics in the
system

 contains all of the body position and velocity variables, but it may
also contain variables representing temperatures, electric currents,
and so on.

9

Numerical Integration

The job of a dynamics simulator is to solve the following initial value
problem during the intervals between events.

This problem is solved by numerical integration, which inevitably
introduces truncation error into your simulation. The amount of error
depends on the integration method and the step size.

Integration methods can be classified according to their order. The
higher the order, the more accurate the method; but higher-order
methods are both more expensive and more fragile (greater risk of
numerical instability).

10

Numerical Integration

The job of a dynamics simulator is to solve the following initial value
problem during the intervals between events.

This problem is solved by numerical integration, which inevitably
introduces truncation error into your simulation. The amount of error
depends on the integration method and the step size.

An -order integration method with step size of introduces a
truncation error of order into each step.

11

Numerical Integration -- Tips

1.

2.

3.

avoid Euler's method -- too inaccurate

avoid multi-step methods -- they have to be restarted after every
event

avoid implicit methods -- too inefficient

prefer variable-step methods (see next slide)

for Simulink, a reasonable choice is as follows:
use ode45 when big steps are possible
use ode23 when big steps are ruled out by a fast servo
use ode23t if there are stiff contacts

4.

5.

12

Numerical Integration -- Variable-Step Methods

Rigid-body systems tend to undergo short periods of high acceleration
followed by long periods of low acceleration. Under this circumstance,
variable-step integration methods can greatly increase both the
efficiency and the accuracy of simulation by adapting their step sizes.

take small steps here

take large steps hereac
ce

le
ra

tio
n

time

13

Integrating Angular Velocity to Get a Quaternion

The unit quaternion

represents the orientation of a coordinate
frame B relative to a coordinate frame A, in
which B is rotated by an angle relative to A about a unit vector .

A

B

Given the angular velocity of B relative to A, the problem is to
integrate to get . This problem has to be treated as a
differential equation:

14

Integrating Angular Velocity to Get a Quaternion

The formula to use is

if is expressed in A coordinates. is a stabilization parameter
that keeps close to 1 throughout the integration process. A
suitable value is 0.1.

Tips
1.
2.

normalize quaternions before you use them
stabilization isn't needed if you normalize the quaternion after every step

3. has the same coordinates in both A and B.

14

Integrating Angular Velocity to Get a Quaternion

The formula to use is

if is expressed in A coordinates. is a stabilization parameter
that keeps close to 1 throughout the integration process. A
suitable value is 0.1.

Tips
1.
2.

normalize quaternions before you use them
stabilization isn't needed if you normalize the quaternion after every step

3. has the same coordinates in both A and B.

transpose this submatrix
if is expressed in B
coordinates

15

Modelling Contact and Impact

There are two options:

rigid-contact models, in which rigid bodies come into direct contact,
and

compliant-contact models, in which there are one or more springs
and dampers between each pair of contacting rigid bodies.

1.

2.

Option 2 is the recommended method, for several reasons . . .

16

Modelling Contact and Impact

Compliant contact models are recommended because

they don't need special code to calculate the impulsive dynamics
of the system;

they don't need special code to implement and solve a linear
complementarity problem, or an equivalent quadratic program,
in order to work out when a contact is lost, or has started to slide;

1.

2.

they are forgiving of polyhedral approximations to curved surfaces
in rolling contact;

3.

4.

5.

they agree well with experimental results.

the friction cone is conical (not a square pyramid);

they model effects such as presliding and velocity-dependent
coefficient of restitution;

6.

17

Modelling Contact and Impact

The main objection to compliant contact models is that stiff springs
introduce stiff dynamics, which forces the simulator to take tiny steps;
but the problem is not as bad as the critics claim.

bouncing for 2.4s rolling for 2.4s
settling for 0.2s

he
ig

ht

Experiment performed by
M. Azad: steel ball on cast
iron plate (extremely stiff)
[Azad & Featherstone 2014]

17

Modelling Contact and Impact

The main objection to compliant contact models is that stiff springs
introduce stiff dynamics, which forces the simulator to take tiny steps;
but the problem is not as bad as the critics claim.

bouncing for 2.4s rolling for 2.4s
settling for 0.2s

he
ig

ht

Experiment performed by
M. Azad: steel ball on cast
iron plate (extremely stiff)
[Azad & Featherstone 2014]

step sizes here
range from 0.1s
(the maximum) to
<100µs --- more
than 1000 times
smaller

average step size
here is 9.4ms

average step size here is
0.23ms --- a consequence
of the extreme stiffness.
There are 26 tiny bounces
in this period, approaching
1.4kHz in the limit.

18

Modelling Contact and Impact

make/break contact

contact

no contact

(Alternatively, the ground can be
given a state variable, so that it
recovers from the compression at
its own rate, and the contact is
lost before z reaches zero.)

stiffness
damping

(powers of z as per Azad/Featherstone model)

19

Modelling Contact and Impact

All that is needed in order to model impact is for the
simulator to find accurately the moment of contact.

Impact:

deep penetration
= huge force

correct
trajectory

original step
ends here

it is essential to search within the
current step for the moment of contact

20

Modelling Contact and Impact

Use a (nonlinear) spring, damper and variable clutch.
The spring's extension is a state variable.

Friction:

massless block and trolley: block slides when force reaches
friction cone

normal force
felt here contact

here

21

Simulating the Whole Robot

command control
system

robot

environment

external
forces

position
& velocity

data

sensor
signals

actuator
command

signals

22

Simulating the Whole Robot

control
(calculation)

function

control system

z--1

command signals

feedback signals

new values
of state
variables

old values
of state

variables

actuator signals

This is a sampled-data subsystem called once per servo cycle.

23

Simulating the Whole Robot

forward
dynamics
function

robot

external forces

position and velocity data

signals from
everywhere

sensor
signalssensors

1
s

1
sactuators

kinematics
and

geometry

