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Answer A1

(a) c1 =

[

1
0

]

c2 =

[

−α
1

]

Although this problem is easily solved in an ad-hoc manner, there is also a systematic
method that generalizes to n dimensions. Let B be the 2 × 2 matrix [b1 b2], and let
C = [c1 c2]. The reciprocity condition is then BC

T = 1, which implies C
T = B

−1. So
ci is simply row i of B−1.

(b)

Answer A2

(a) dx, dy and dz are the same in both bases because these vectors depend only on the x, y
and z directions, which are the same for both coordinate frames. We also have dQy = dOy

because Qy = Oy. Thus, the only two vectors that are different in DQ are

dQx = dOx − l dz and dQz = dOz + l dx .

Tip: A quick way to work out the answer is to imagine a rigid body performing the
rotation you want to represent, and ask what happens to the body-fixed point at O. For
example, if the body performs a rotation about Qx at unit angular velocity then the
body-fixed point at O will move straight down with a linear velocity magnitude of l, so
dQx = dOx − l dz.

(b) The coordinates ωx, ωy and ωz are the same in both vectors. To obtain expressions for

the linear coordinates, we use the formula vQ = vO −
−−→
OQ× ω with

−−→
OQ = [0 l 0]T. This

gives
vQx = vOx − l ωz

vQy = vOy

vQz = vOz + l ωx

(c) ωxdQx + ωydQy + ωzdQz + vQxdx + vQydy + vQzdz

= ωx(dOx − ldz) + ωydOy + ωz(dOz + ldx) + (vOx − lωz)dx + vOydy + (vOz + lωx)dz

= ωxdOx + ωydOy + ωzdOz + vOxdx + vOydy + vOzdz .
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Answer B1

a1 = s1 q̈1 + ṡ1 q̇1 = s1 q̈1 =
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a2 = a1 + s2 q̈2 + ṡ2 q̇2

= a1 + s2 q̈2 + v1 × s2 q̇2

=
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Answer B2

Let C denote the position of a point on the central axis of the cylinder. The coordinates of C
are then (0, y0 + v t, r), where y0 is the y coordinate of C at t = 0. The angular velocity of the
cylinder is ω = [−v/r 0 0 ]T, and the linear velocity at C is vC = [ 0 v 0 ]T. The linear velocity
at O is therefore

vO = vC +
−−→
OC × ω =


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Let âO be the coordinate vector expressing the spatial acceleration of the cylinder at O. As O
is a fixed point in space, âO is just the componentwise derivative of the spatial velocity, v̂O:

âO =
d

dt
v̂O =

d

dt
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.

Note: if we wish to perform this calculation at the moving point C, instead of the fixed point O,
then we must calculate âC using the formula for differentiation in a moving Plücker coordinate
system.
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