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Vectors and Vector Spaces

A vector is, by definition, an element of a vector space.

A vector space is, by definition, a mathematical structure
consisting of an abelian group    , a field    , and a binary
operator that maps

The elements of     are called vectors, and the elements of
are called scalars.

Although the definition allows     to be any field, we will use
only the field of real numbers,    .  So 'scalar' will always
mean 'real number'.
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Vectors and Vector Spaces

The group operator implements vector addition.

So the group identity is the zero vector,    , and the inverse
of vector     is      .

The binary operator implements scalar multiplication, and
is required to be distributive over the group operator.  So

Addition and scalar multiplication are the only two operations
that must be defined on all vectors.



4

Types of Vector

Most vectors have additional properties, which give rise to
particular types of vector.  For example:

Type Special Properties

coordinate vector
Euclidean vector
spatial vector

coordinates
magnitude and direction
two magnitudes and a directed line

Note:  Some textbooks define a vector to be an element of      ,
but this is the definition of a coordinate vector, not a general
vector.
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Euclidean Vectors  (revision)

A Euclidean vector can be represented graphically by
an arrow.  The length and direction of
the arrow represent the magnitude
and direction of the vector.

Vector addition follows the parallelogram rule:



6

Euclidean Vectors  (revision)

A scalar product (called 'dot product') is defined on
Euclidean vectors as follows:

where      denotes the magnitude of    .

So                if           or           or     and     are at right angles
(i.e., they are orthogonal to each other), and

(so                if and only if         ).
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Euclidean Vectors  (revision)

The scalar product is symmetrical (                   ) and bilinear,
which means that it is linear in each argument.  So

and similarly for

Parentheses are not needed in expressions like
because

etc.
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Euclidean Vectors  (revision)

If     is a unit vector (i.e.,           ) then             is the
component of     in the direction of    , and
is the component of     orthogonal to    .

The magnitudes of these two components are
and               , respectively.
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Euclidean Vectors  (revision)

A vector product (called 'cross product') is defined on 3D
Euclidean vectors as follows:

    is at right angles to both     and    , and it points in the
direction such that a positive rotation (in the right-hand
rule sense) of     about     moves it closer to    .



10

Euclidean Vectors  (revision)

The vector product is bilinear, so

etc.

By convention, expressions like                  are interpreted as
                    (i.e., the parentheses group to the right, which is
the opposite of the convention for subtraction:
                  ).

However, it is not symmetric (                         ) and it is not
associative:
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Euclidean Vectors  (revision)

A few more useful formulae:

When using coordinate vectors (in Cartesian coordinates) we
also have                    , and           is the product of a 3x3
matrix       with the vector    .

(triangle inequality)
(so-called 'triple product')

If then
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Euclidean Vectors  (revision)

Some properties of      :

(skew symetry)

(where     is 3x3 orthogonal)

Note:
alternative notations exist for      , such as
the cross in       binds tightly to the 'a' so that expressions like
               mean                    , which is the same thing as
                   on slide 10.
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Euclidean Vectors  (revision)

A worked example:   prove

Tip:

solution:

It makes no difference whether you think of             as the
cross product of     and     or as the product of        with   .
The two are equivalent.



14

Bases and Coordinates  (revision)

Let     be an    -dimensional vector space, and let
                                         be a set of     vectors in    ,            .

A set of vectors     is said to be linearly independent if the
only solution to the equation                          is           .

If the vectors in     are linearly independent then     spans an
   -dimensional subspace of     (denoted              ) and forms
a basis on it.

In this case, any vector                      can be expressed
uniquely as a linear combination of the elements of    :

and the scalars     are the coordinates of     in the basis    .
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Bases and Coordinates  (revision)

So the basis     defines a coordinate system on              ,
which we will call     coordinates.  Any vector
can be represented in     coordinates by a coordinate vector

Observe the difference between the coordinate vector             ,
which is a list of real numbers, and the vector it represents,
         , which could be (almost) anything: force, velocity, ...

Note:  if             then                      .

but
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Bases and Coordinates  (revision)

Some examples (using Euclidean vectors):

The Euclidean vector     is the same in all 3 examples, but the
coordinate vector     varies with the choice of basis vectors.



17

Bases and Coordinates  (revision)

If     is Euclidean then it is possible to define a basis with the
following property:

A basis with this property is called an orthonormal basis, and
it produces a Cartesian coordinate system.

If coordinate vectors     and     represent Euclidean vectors
    and     in the same Cartesian coordinate system then

If     is orthonormal then the coordinates of     in     are
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Bases and Coordinates  (revision)

In 3D space we define a Cartesian coordinate
system using a Cartesian frame.

It also defines three directed lines,      ,       and      , which lie on
the    ,     and     axes, respectively.  We will be using them later.

This frame defines an origin,    , and three
directions,    ,     and    .
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Bases and Coordinates  (revision)

Cartesian coordinates can be used to
define the

To accomplish the latter we introduce an orthonormal basis,
            , aligned with the frame's   ,    and    directions.

position of a point, or the

magnitude and direction of a
Euclidean vector
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Now try question set A
in part1Q.pdf

(answers in part1A.pdf)
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Vector Fields

Note:  A Euclidean space is a set of points with a Euclidean
distance metric.  A Euclidean vector space is a space of
Euclidean vectors.  Physical space is a Euclidean space.

A vector field is a function that maps each point in a Euclidean
(point) space to a Euclidean vector at that point.  In effect, it
associates a magnitude and a direction with each point in that
space.  Vector fields can describe a variety of physical
phenomena, such as:

force fields (gravitational, magnetic, etc.)

fluid flows

the velocity of a rigid body



22

point
vector

Vector Fields

A vector field can be shown
graphically as a collection of
arrows emanating from a
representative sample of
points.

vector field

The length and direction of
the arrow show the magnitude
and direction of the vector.
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Vector Fields

A vector field is itself a vector because it satisfies the formal
definition.  The two basic operations on vector fields are:

Addition:

Multiplication by a scalar:

iff

iff for all

for all
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Vector Fields

+ =

× 2 =
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Body-Fixed Points

A body-fixed point is a point in
a fixed location relative to a
rigid body.
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Body-Fixed Points

A body-fixed point is a point in
a fixed location relative to a
rigid body.

When the body moves, the point
moves with it.
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Body-Fixed Points

A body-fixed point is a point in
a fixed location relative to a
rigid body.

When the body moves, the point
moves with it.

If we imagine the whole of
space to be filled with body-fixed
points, then the motion of the
body defines a vector field.
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Velocity Vector Field

In particular, the velocity of the
body defines a velocity vector
field that specifies, for each
point in space, the linear velocity
of the body-fixed point passing
through it.

point P
fixed in
space

body-fixed
point P'

path of P'

velocity of P'
= V(P)
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Velocity Vector Field

In particular, the velocity of the
body defines a velocity vector
field that specifies, for each
point in space, the linear velocity
of the body-fixed point passing
through it.

This field provides a complete
description of the body's velocity
in a way that is independent of
whether the body is translating,
rotating, or both.

It describes any rigid-body velocity.
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Velocity Vector Field = Spatial Velocity

The set of vector fields that
describe every possible velocity
of a rigid body moving in 3D
space forms a 6D vector space.
The elements of this space are
spatial velocity vectors.

(If the body's motion is restricted
to a 2D plane then we get a 3D
vector space whose elements
are planar velocity vectors.)



31

Planar Velocity Example

If a rigid body is constrained to move in a plane then there are
only two types of velocity it can have:

pure translation, or

rotation about a point.

Together they form the 3D space of planar velocity vector fields.

Let us now define a basis on this space . . . .
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Planar Velocity Example

If we place a Cartesian frame anywhere in the plane then we can
use it to define the following three basis vectors:

unit rotation
about the origin

unit translation
in the    direction

unit translation
in the    direction
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Planar Velocity Example

Suppose that a rigid body is rotating
with angular velocity     about a point
    having coordinates       and       in
our chosen coordinate system.

How do we find the coordinates of
this velocity in the basis                       ?
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Planar Velocity Example

Step 1:   Calculate the  linear velocity
of the body-fixed point at the origin:

and the corresponding coordinate
vector is
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Planar Velocity Example

Step 2:   The velocity of the body can
now be expressed as the sum of a
rotation of magnitude     about the
origin and a translation of      .

(actual velocity) (coordinate vector)

These two quantities are           and
                             , respectively, so
the planar velocity of the rigid body is
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Addition of Velocity Vector Fields

rotation translation rotation about
a different point+ =

+ =

Adding a translation to a rotation moves the rotation centre in a
direction at right angles to the translation.
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Screwing Motion

The most general movement of
a rigid body is a screwing motion
consisting of a translation along
and rotation about a particular
line in space.

(The study of this kind of motion
is the subject of screw theory,
which is closely related to spatial
vector algebra.)
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Screwing Motion

helicoidal
vector field

instantaneous
screw axisThe most general velocity of

a rigid body is therefore also
a screwing motion about a
particular line in space.

In this case the line is called
the instantaneous screw axis,
and the velocity vector field is
helicoidal in shape.

(In screw theory this motion is
called a twist velocity, or simply
a twist.)
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Screwing Motion

helicoidal
vector field

instantaneous
screw axisThe body's velocity can now be

described using two numbers
and a line:

a linear velocity magnitude

(In screw theory the ratio of the
two magnitudes is called the pitch.)

an angular velocity magnitude

the instantaneous screw axis
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Screwing Motion

helicoidal
vector field

instantaneous
screw axisObserve the difference between

the velocity of a particle and that
of a rigid body.

magnitude and direction
(3D Euclidean vector)

two magnitudes and a line
(6D spatial vector)

particle

rigid body
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Coordinates

We now have two ways to describe rigid-body velocity:

In this case, the velocity is described by a 6D coordinate vector
in the coordinate system defined by the basis vectors.

1.

2.

a vector field, or

two numbers and a line.

However, all velocities are elements of vector spaces, so we also
have a third method:

3. a linear combination of six basis vectors.
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Coordinates

The most useful kind of basis consists of the following:

three unit rotations about the   ,
and    axes of a Cartesian frame,
plus

three unit translations in the   ,
and    directions of the same
frame.

This is called a Plücker basis, and it gives rise to a Plücker
coordinate system, which we will discuss in more detail later.
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Summary

We have now covered the following items:

revision of vectors, bases and coordinates;

vector fields;

rigid-body velocity treated as a vector field, with velocity
in the plane as an example;

general screwing motion in 3D;

a preview of Plücker coordinates.
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Now try question set B
in part1Q.pdf

(answers in part1A.pdf)


