
ISTITUTO ITALIANO DI TECNOLOGIA, AND

UNIVERSITY OF GENOA

Skippy, the Balancing and Hopping Robot
by

Federico Allione

Thesis submitted for the degree of Doctor of Philosophy (XXXVI cycle)

February 2024

Prof. Roy Featherstone Supervisor
Prof. Darwin Caldwell Supervisor
Prof. Paolo Massobrio Head of the PhD program

Thesis Jury:
Prof. Federico Colombo, Polytechnic University of Turin External examiner
Prof. Marco Camurri, Free University of Bozen-Bolzano External examiner

Department of Informatics, Bioengineering, Robotics and Systems Engineering

PHD PROGRAM IN BIOENGINEERING AND ROBOTICS

Declaration

I hereby declare that except where specific reference is made to the work of others, the
contents of this dissertation are original and have not been submitted in whole or in part
for consideration for any other degree or qualification in this, or any other university. This
dissertation is my own work and contains nothing which is the outcome of work done in
collaboration with others, except as specified in the text and Acknowledgements. This
dissertation contains fewer than 65,000 words including appendices, bibliography, footnotes,
tables and equations and has fewer than 150 figures.

Federico Allione
January 2024

Abstract

Legged robots have gained popularity recently, with quadrupeds being sufficiently reliable to
leave the research labs and be deployed in real-world environments. Humanoids, on the other
hand, still need to be developed more, and extensive research in the field of legged robots
is still required. This thesis presents Skippy, a highly athletic, underactuated balancing and
hopping monopedal robot. Skippy is a simple robot with only one leg and two actuators, and
although its design is simple, complex dynamics govern it. Due to its intrinsic instability, it
is difficult to control, making it a suitable testing machine for novel balancing and hopping
control algorithms.

The beginning of this work focuses on the experimental validation of robotic hardware and
software. It proposes a methodology to verify the correct behaviour of Skippy’s sensorimotor
system in all the possible scenarios it can encounter while operating (e.g. continuous hopping,
crash landing after a wrong manoeuvre) through purpose-built testing apparatus. Furthermore,
it presents the intermediate 2D balancing machines built before Skippy to validate the correct
behaviour of the aforementioned sensorimotor system while balancing using Featherstone’s
balance controller. Then, the research described in this thesis extends Featherstone’s balance
controller to the case of a robot balancing on a rolling contact rather than on a single-contact
point foot, and it validates it with an experiment on a purpose-built balancing machine. At
last, this work shows Skippy in its 2D-constrained version, proving the robot’s capability as
a balancing and hopping machine.

Table of contents

List of figures vii

List of tables xi

Acronyms xii

List of Publications xiv

1 Introduction 1
1.1 Motivation . 2
1.2 Objectives and Contributions . 3
1.3 Thesis Overview . 4

2 Background 6
2.1 Underactuated Robots . 10

2.1.1 Balancing Robots . 11
2.1.2 Hopping Robots . 13
2.1.3 Skippy’s Design Novelty . 16

2.2 Onboard Sensors . 16
2.2.1 Inertial Measurement Unit . 17
2.2.2 Sensor’s Testing Novelty . 18

2.3 Balance Controllers . 18
2.3.1 Dynamic Balancing . 19
2.3.2 Skippy’s Controller Novelty . 21

2.4 Thesis Contributions . 21

3 Sensors Testing 23
3.1 Encoders Testing . 24

Table of contents iv

3.1.1 Experimental Setup . 25
3.1.2 Data Acquisition System . 28
3.1.3 Experimental and Analysis procedure 29
3.1.4 Conclusions . 36

3.2 IMU Testing . 36
3.2.1 Experimental Setup . 37
3.2.2 Data Acquisition System . 41
3.2.3 Results . 43
3.2.4 Discussion . 54
3.2.5 Conclusions . 57

3.3 General Comments and Limitations . 58

4 Reaction Wheel Pendulum 59
4.1 General Balance Control Theory . 59
4.2 RWP Special Case . 64
4.3 Balance Offset Observer . 66
4.4 Experimental Setup . 67

4.4.1 Actuation System . 68
4.4.2 Reaction Wheel . 69
4.4.3 Sensors . 69
4.4.4 Control Unit: The Brain . 70

4.5 Experimental Results . 72
4.5.1 Tracking Performance . 72

4.6 Conclusion . 73

5 General Inverted Double Pendulum 74
5.1 Experimental Setup . 74
5.2 Control System . 74
5.3 Experimental Results . 76
5.4 Conclusion . 81

6 Balancing on a Rolling Contact 82
6.1 Balancing on a Horizontal Surface . 82

6.1.1 Robot Model . 82
6.1.2 Tracking Error . 85
6.1.3 New Balance Controller . 87

Table of contents v

6.1.4 Simulation Experiments . 90
6.1.5 Linear Velocity Gain . 91
6.1.6 Physical Experiment . 94
6.1.7 Balancing on a Wheel . 98

6.2 Balancing on a Slope . 100
6.2.1 Model Description . 100
6.2.2 Tracking Error . 101
6.2.3 Rolling Slope Controller . 102
6.2.4 Simulation Experiments . 102

6.3 Conclusion . 104

7 Balancing and Hopping on a Springy Leg 106
7.1 The Robot . 106

7.1.1 Foot . 107
7.1.2 Leg . 109
7.1.3 4-bar Mechanism . 109
7.1.4 Torso . 110
7.1.5 Crossbar . 110
7.1.6 Rocker . 112
7.1.7 Nut . 112
7.1.8 Actuation System . 112
7.1.9 Sensors . 113
7.1.10 Skippy’s Springs . 114

7.2 Kinematic Model . 118
7.2.1 Model Mapping . 118

7.3 Centre of Mass Observer . 122
7.4 Experiment . 124
7.5 Conclusion . 129

8 Conclusion 130

References 132

Appendix A RWP Dynamic Parameters Estimation 143
A.1 First Moment of Mass . 143
A.2 Time Constant of Toppling . 144

Table of contents vi

A.3 Angular Velocity Gain . 145

Appendix B Skippy’s Kinematics 146
B.1 4-bar Linkage Kinematics . 146

B.1.1 Forward Kinematics . 147
B.1.2 Inverse Kinematics . 148
B.1.3 Velocity Kinematics . 148

B.2 Matlab Functions . 148
B.3 Kinematic Diagram . 152

List of figures

1.1 Skippy, the balancing and hopping robot 2
1.2 Conceptual diagram of Skippy [1]. 3

2.1 Quadruped robots: (a) Istituto Italiano di Tecnologia (IIT) HyQReal, (b) Boston
Dynamics Spot, (c) ANYbotics ANYmal, and (d) Unitree Go1. 7

2.2 Hybrid robots: (a) IIT Centauro, (b) Università di Genova (UniGe) Mantis,
(c) ANYbotics ANYmal with Wheels, and (d) MSU Tailbot. 8

2.3 Humanoid robots: (a) IIT Walk-Man, (b) Agility Robotics Digit, (c) Boston
Dynamics Atlas, and (d) Pal Robotics Talos. 9

2.4 (a) Pendulum on a cart [2]; (b) Rotary inverted pendulum [3]. 11
2.5 (a) Reaction wheel pendulum [4]; (b) Inverted double pendulum [5]. 12
2.6 (a) Linear actuation [6]; (b) Angular actuation [7]. 14
2.7 (a) IIT iCub balancing on a leg [8]; (b) Bicycle with flywheels [9]. 20

3.1 Catapult qualitative representation. 25
3.2 Experimental setup . 26
3.3 Specimen’s vertical position during multiple slams 30
3.4 Velocity of the specimen before and after the impact. 31
3.5 Acceleration peak and half sine shape mask. 32
3.6 Validity of the motor absolute encoder measured position 34
3.7 Position error θ . 35
3.8 Qualitative representation of the experimental setup 38
3.9 Top view of the tested IMUs . 39
3.10 Motor control signal . 41
3.11 IMUs plots legend . 44
3.12 Synchronized measurements of pitch obtained from the encoder and the

IMUs at the beginning of the 4 g experiment. 46

List of figures viii

3.13 Synchronized measurements of pitch obtained from the encoder and the
IMUs at the end of the 4 g experiment. 46

3.14 Filtered orientation error on x axis during the 4 g experiment 47
3.15 Filtered orientation error on y axis during the 4 g experiment 47
3.16 Filtered orientation error on z axis during 4 g experiment 48
3.17 Filtered orientation error on z axis after the 4 g experiment 48
3.18 Synchronized measurements of pitch obtained from the encoder and the

IMUs at the beginning of the 8 g experiment and at steady state. 50
3.19 Synchronized measurements of pitch obtained from the encoder and the

IMUs at the end of the 8 g experiment. 51
3.20 Filtered orientation error on x axis during the 8 g experiment 51
3.21 Filtered orientation error on y axis during the 8 g experiment 52
3.22 Filtered orientation error on z axis during the 8 g experiment 52
3.23 Filtered orientation error on z axis after the 8 g experiment 53
3.24 Synchronized measurements of pitch obtained from the encoder and the

IMUs at the beginning of the 16 g experiment and at steady state. 54
3.25 Synchronized measurements of pitch obtained from the encoder and the IMU

at the end of the 16 g experiment. 55
3.26 Filtered orientation error on x axis during 16 g experiment 55
3.27 Filtered orientation error on y axis during 16 g experiment 56
3.28 Filtered orientation error on z axis during 16 g experiment 56
3.29 Filtered orientation error on z axis after 16 g experiment 57

4.1 Plant model of the balance dynamics for any planar robot [5]. 60
4.2 Dynamic model of the planar double pendulum [5]. 60
4.3 Reaction wheel pendulum model [4]. 65
4.4 (a): CAD model; (b): Skippy’s Head as RWP 67
4.5 Capstan-drive mechanism and Brain [5]. 68
4.6 Skippy and Tippy tracking performance 71

5.1 Photos of the balancing machine . 75
5.2 Tracking of motion command qc . 77
5.3 Enlarged views of Figure 5.2. 78
5.4 Tracking error through the experiment after the robot self-balanced itself. . 79
5.5 Back foot slippage . 79
5.6 Robot rotates in the yaw direction . 80

List of figures ix

5.7 Tennis ball interaction . 81

6.1 Photos of the rolling balancing machine 83
6.2 Schematic model of the rolling double pendulum. 83
6.3 Tracking position for joint q2 for a rolling double pendulum 86
6.4 Tracking position for joint 2 with varying radius [m] 91
6.5 Velocity gain with the robot . 92
6.6 Leaning in anticipation effects . 93
6.7 Tracking position for joint 2 with varying radius [m] 94
6.8 Robot velocity gain during the experiment with varying radius [m]. 95
6.9 Tracking position for joint 2 . 96
6.10 Estimated position of the centre of mass throughout the experiment 97
6.11 Schematic model of the robot balancing on a wheel 98
6.12 Tracking position for joint 2 with radius of the wheel r = 0.2 m 99
6.13 Tracking velocity for joint qr . 99
6.14 Schematic model of the rolling double pendulum balancing on a slope . . . 100
6.15 Tracking position for joint 2 for a rolling double pendulum balancing on a

22.5◦ slope . 101
6.16 Tracking position for joint 2 with varying slope. 103
6.17 Detail of tracking position for joint 2 with varying slope. 103
6.18 Motion of the rolling contact qr with varying slope. 104

7.1 Skippy with its springy leg and knife-edge shoe at rest (a) and balancing (b). 107
7.2 Skippy’s bodies and joints used to control the real robot. 108
7.3 (a) Foot assembly and (b) foot assembly constrained. 109
7.4 The 4-bar mechanism . 110
7.5 Details of Skippy’s bodies. 111
7.6 Skippy’s symmetric crossbar. 111
7.7 Skippy’s hip actuation system. 113
7.8 Tapered fibreglass springs . 115
7.9 Accuracy of model fit to measured data for Ankle and Main spring 116
7.10 Fracture limit for the springs in compression. 117
7.11 Repeatability experiments for the tapered fibreglass springs 117
7.12 Simplified Skippy’s kinematic model . 119
7.13 Centre of mass tracking . 123
7.14 Velocity of the main motor sticks to zero when cx reaches to zero. 124

List of figures x

7.15 Hopping experiment. 125
7.16 Voltage profile through the experiment . 126
7.17 Feed forward voltage profile for hopping 126
7.18 Position of joint q10 while balancing and hopping. 127
7.19 Position of joint q10 while balancing and hopping. 127

A.1 Drawing for the first moment of mass mc. 144

B.1 Kinematic diagram of Skippy’s 4-bar mechanism 147
B.2 New kinematic diagram of Skippy . 153

List of tables

3.1 Catapult specifications. 27
3.2 Experimental results . 34
3.3 RMSE and PTPE of the position error . 36
3.4 imus accuracy . 42
3.5 Experimental maximum accelerations . 45

4.1 Dynamic parameters of the reaction wheel pendulum. 70

5.1 Dynamic parameters of the inverted double pendulum 75

6.1 Rolling machine dynamic parameters . 84
6.2 Velocity gain Gv and toppling time constant Tc with the robot in its vertical

position according to the radius value r. 92
6.3 Dynamic and kinematic parameters of the rolling robot 95
6.4 Leaning angle q1 and toppling time constant Tc 102

7.1 Left: list of bodies; right: list of joint variables. 108
7.2 Measured parameters used to model the behaviour of the springs 114
7.3 List of kinematic parameters of Skippy’s mechanism of Figures 7.12 120
7.4 List of dynamic parameters of Skippy’s mechanism of Figures 7.12 and B.2 121

Acronyms

AHRS Attitude and Heading Reference Systems.

BiSS-C Bidirectional Interface for Serial/Synchronous.

CAD Computer Aided Design.

CoM Centre of Mass.

CRC Cyclic Redundancy Check.

DoF Degrees of Freedom.

eQEP Enhanced Quadrature Encoder Pulse.

FFT Fast Fourier Transform.

FPGA Field Programmable Gate Array.

I2C Inter-Integrated Circuit.

IIT Istituto italiano di Tecnologia (Italian Institute of Technology).

IMU Inertial Measurement Unit.

LIDAR Light Detection And Ranging.

LQR Linear Quadratic Regularization.

MEMS Micro Electro-Mechanical System.

MPC Model Predictive Control.

Acronyms xiii

MSU Michigan State University.

PD Proportional Derivative.

PID Proportional Integral Derivative.

PTPE Peak to Peak Error.

PWM Pulse-Width Modulation.

RMSE Root Mean Square Error.

RWP Reaction Wheel Pendulum.

SBR Self Balancing Robot.

SCADA Supervisory Control and Data Acquisition.

SLIP Spring Loaded Inverted Pendulum.

SPI Serial Peripheral Interface.

UniGe Università di Genova.

VI Virtual Instrument.

List of Publications

International Journals

1. F. Allione, R. Featherstone, P. Wensing, and D. G. Caldwell, "Balancing on a Rolling
Contact", IEEE Robotics and Automation Letters, Early Access, p. 1-8, 2023, DOI:
10.1109/LRA.2023.3326696.

2. F. Allione, J. D. Gamba, A. E. Gkikakis, R. Featherstone, and D. G. Caldwell,
"Effects of repetitive low-acceleration impacts on attitude estimation with micro-
electromechanical inertial measurement units", Frontiers in Robotics and AI, vol. 10,
2023.

International Conferences with Peer Review

1. F. Allione, A. E. Gkikakis, and R. Featherstone, "Experimental demonstration of a
general balancing controller on an untethered planar inverted double pendulum", in
2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pp. 8292–8297, 2022.

2. F. Allione, B. R. P. Singh, A. E. Gkikakis, and R. Featherstone, "Mechanical shock
testing of incremental and absolute position encoders", in 2021 20th International

Conference on Advanced Robotics (ICAR), pp. 52–57, 2021.

Chapter 1

Introduction

As legged robots become a part of our daily lives, we expect them to get better at moving
around. They should be able to walk, run, and even jump like humans and animals do [10;
11; 12]. Meeting these expectations means these robots need improved designs and control
systems before leaving the research labs.

Quadrupeds have recently become sufficiently reliable and robust to leave a laboratory’s
protective and controlled environment to enter the real world. Their hardware and software
allow them to withstand the unexpected and unmodelled challenges the outer world can
produce. Some of them, such as ANYmal [13] and Spot [14], have already been deployed in
real working environments, mainly for industrial plant inspection.

Humanoids, on the other hand, are not completely ready to leave research labs, being still
too slow and clumsy for daily activities. Although Atlas [15] and Digit [16] showed dynamic
and athletic behaviours, humanoids cannot still be relied on for being introduced to the real
world, although Digit is currently being tested in warehouses. The articulated mechanical
structure, combined with highly complex tasks (such as walking), makes controlling this
type of robot very demanding in terms of computational power and energy consumption.

This thesis focuses on realising and controlling a highly athletic, underactuated monope-
dal robot, with only one leg and two actuators. However, even this simple robot is governed
by complex dynamics and is difficult to control due to its intrinsic instability. This work
presents an in-depth experimental analysis of the challenges faced in the robot’s development
process, and the results can be used to inform the design of more complicated legged robots,
such as bipeds and quadrupeds.

1.1 Motivation 2

Figure 1.1 Skippy, the balancing and hopping robot

1.1 Motivation

This thesis is part of a larger project called Skippy. The project’s objective is to design and
build Skippy, a highly athletic monopedal robot, able to balance and hop in 3D using only
two motors, see Figure 1.1. Skippy’s design is technology inspired, meaning it is actively
pursuing the best possible performance with the current technology in terms of actuation
strategy, materials and design. The design of Skippy has been the objective of intensive
study by one member of the Skippy team, Gkikakis [1]. In his work, the mechanical design
and the desired robot’s behaviour are co-optimized to achieve high performance, under the
assumption that ‘it is easier to increase the complexity of a high-performance robot than to

increase the performance of a highly complex robot’ [17]. The objective is the realisation of
the simplest possible robot physically able to perform the desired tasks, such as balancing
and hopping, with a simple and light weight controller.

From the control point of view, Skippy’s balance controller relies on Featherstone’s
controller [18], which has been further developed and expanded by two other members of
the team, Singh [19] and Gamba [20]. This thesis pushes the Skippy project a step further

1.2 Objectives and Contributions 3

Figure 1.2 Conceptual diagram of Skippy [1].

by building Skippy, validating the previous simulation studies, and extending even more
Featherstone’s balance controller.

Skippy’s hardware has been designed and built in stages. Its modular structure allows
for a progressive development of both hardware and software. At each development step,
extra complexity is added, making the robot more difficult to control but at the same time
more performing. The structure of this thesis follows this trend by presenting the developed
machines from the simplest to the most complex.

This thesis presents the experimental results obtained through the intermediate steps in
developing Skippy, together with the controller that allowed for such results.

1.2 Objectives and Contributions

The main goal of the Skippy project is to design, build and control a highly athletic monopedal
balancing and hopping machine called Skippy. Skippy is technology inspired, designed to be
fully autonomous, untethered and battery-operated. All computation takes place on board,
and the operator can start, stop and log all the experiments remotely. Skippy, in its final
configuration, will be able to balance and hop in 3D using only two actuators, as shown in

1.3 Thesis Overview 4

Figure 1.2. The mechanism is planar except for the crossbar, which rotates about the axis
shown. The main actuator has two functions: balancing and hopping in the sagittal plane,
while the crossbar actuator keeps that plane vertical. Skippy is designed to be robust enough
to withstand falls and crash landings due to mistakes and accidents, making it a reliable
platform for testing learning algorithms.

My work mainly contributed to building Skippy and controlling its various 2D configura-
tions. More in detail, my personal contribution is presented below, divided into preliminary
work not reported in this thesis and the research activities described in this work.

The preliminary work consisted in

• CAD modelling and technical drawings of Skippy’s mechanical components from a
qualitative design,

• physical assembling of Skippy, and

• integrating the sensorimotor system.

The research work consisted in

• presenting and applying a methodology to test the sensorimotor system in all possible
Skippy’s working scenarios,

• implementing Featherstone’s balance controller on three different 2D balancing ma-
chines (i.e. a reaction wheel pendulum, a rigid inverted double pendulum and a
spring-loaded inverted double pendulum),

• extending Featherstone’s balance controller to the case of robot balancing in 2D on
rounded feet or wheels, and

• balancing and hopping with Skippy in 2D.

1.3 Thesis Overview

The structure of this work follows the steps taken in building Skippy, and it is organised as
follows.

• Chapter 1: This chapter introduces this thesis with a general overview of the contents.
It presents the motivations, objectives and contributions of this work.

1.3 Thesis Overview 5

• Chapter 2: This chapter covers the necessary background to understand the motivation
and scope of this thesis. It starts with a brief outlook on legged robots and then presents
state-of-the-art research in the field of balancing and hopping machines, with the
main focus on underactuated robots. It then introduces the problem of testing the
sensorimotor system of the robot. The final topic of this chapter is a literature review
of the balance controllers used in robotics.

• Chapter 3: This chapter describes the experiments performed to test the behaviour of
Skippy’s sensorimotor system. It tests the encoders, motor and control unit in case
of high impact shocks (e.g. foot hitting the ground after a high hop or robot crash
landing after a wrong manoeuvre), and the inertial measurement unit in case of a low
acceleration continuous motion (e.g. robot continuously hopping).

• Chapter 4: This chapter presents Featherstone’s balance controller, which is the balance
controller used in this thesis. It then proposes a simplified version of such a controller
for the special case of a reaction wheel pendulum; eventually, it tests it on a purpose-
built reaction wheel pendulum.

• Chapter 5: This chapter experimentally proves Featherstone’s balance controller on
an inverted double pendulum. The focus is on the experimental procedure and results,
relying on the theory already shown in the previous chapter.

• Chapter 6: This chapter extends Featherstone’s balance controller to the case of a
robot that balances on rounded feet or wheels on flat horizontal surfaces. It starts
presenting the controller and validating it in simulation and with a real robot. Then, the
controller is further extended to the case of a robot balancing on a slope, and simulation
experiments prove such an extension.

• Chapter 7: This chapter introduces Skippy in its 2D version. The robot proved to
be able to balance and hop without losing balance. Furthermore, this chapter proves
the robustness of Featherstone’s controller to unmodelled robot parameters, being the
spring-loaded leg of Skippy, of which the controller is completely unaware.

• Chapter 8: This chapter is the conclusion of this thesis. It summarises the contribution
of this work and proposes directions for future works.

Chapter 2

Background

Legged mobile robots have become increasingly important in the field of robotics, serving as
both research platforms for testing advanced motion control algorithms and as specialized
tools for automated tasks in industry. Examples of these robots include HyQReal [21],
Spot [14], ANYmal [11], and UniTree Go1 [22], all of which demonstrate the capabilities
of quadrupedal robots, Figure 2.1. These robots are designed to be agile and versatile,
allowing them to navigate difficult terrain, jump over obstacles, and perform manoeuvres that
were previously impossible for slow or statically balanced robots. Another trend in legged
locomotion consists in hybrid wheel-leg design, where the robots use wheels to move faster
in flat terrain and legs to go through unstructured and rough terrains. Examples of this type
of robot are shown in Figure 2.2, and are CENTAURO [23], ANYmal with wheels [24] and
Mantis [25]. These robots vary significantly in shape and size but have the same motion
strategy; they rely on efficient wheeled locomotion when moving on structured terrains, and
they overcome obstacles using their legs. Another example of hybrid locomotion can be
found in [26], where the authors designed a hopping Segway-like robot which is supposed to
use wheeled locomotion in even and structured terrains and hop over obstacles by means of a
spring-loaded approach. There are also examples of bio-inspired hybrid locomotion such
as MSU Tailbot [27] (Figure 2.2d), which merges wheeled locomotion, jumping abilities
to overcome obstacles and aerial manoeuvring ability of lizards. Another branch of legged
locomotion uses humanoid robots such as Atlas [15], Digit [16], WALK-MAN [28] or
TALOS [29] to explore bipedal locomotion, Figure 2.3. All these robots are designed and
built to be highly complex, and then it is the work of the control system to achieve high
performance. This is essentially the opposite design process to that followed in this thesis
and in the Skippy project, where the highest performance is sought by means of a robot
deliberately designed to be as simple as possible.

7

(a) (b)

(c) (d)

Figure 2.1 Quadruped robots: (a) Istituto Italiano di Tecnologia (IIT) HyQReal, (b) Boston
Dynamics Spot, (c) ANYbotics ANYmal, and (d) Unitree Go1.

8

(a) (b)

(c) (d)

Figure 2.2 Hybrid robots: (a) IIT Centauro, (b) Università di Genova (UniGe) Mantis,
(c) ANYbotics ANYmal with Wheels, and (d) MSU Tailbot.

9

(a) (b)

(c) (d)

Figure 2.3 Humanoid robots: (a) IIT Walk-Man, (b) Agility Robotics Digit, (c) Boston
Dynamics Atlas, and (d) Pal Robotics Talos.

2.1 Underactuated Robots 10

This thesis mainly focuses on dynamic balancing on a purpose-built underactuated one-
legged robot called Skippy which balances on a single point. Skippy is a modular robot and
can be configured in various ways, which can be used to explore 2D balancing, 3D balancing
and hopping.

Multiple examples can be found in the literature of balancing machines that can travel
in space by means of hops, such as Raibert’s one-leg robot [30] or Carlési and Chemori’s
Kangaroo [31]. Other examples try to mimic animal jumping behaviours, such as Zuo, Lin
and Wang’s kangaroo [32] or the hopping machine of Zhang et al. [33] that mimics the
locomotion of locusts. All these robots have in common the ability to travel in space (or
plane) using hops. Some of them, such as Zhang et al. [33], use a pole leg (a second leg) to
self-right and steer.

Skippy is intended to push a step further the mobility of hopping robots. It is designed
to balance and reorient itself in 3D and then to hop to move in space. Furthermore, Skippy
will be able to self-right after every crash land, regardless of the robot’s orientation, which is
an improvement of the self-righting technique proposed by Zhang in [34] where the robot
cannot self-right when it falls on its backside.

2.1 Underactuated Robots

An underactuated robot has fewer actuators or control inputs than the Degrees of Freedom
(DoFs) in its mechanical structure. In simpler terms, an underactuated robot has more motion
freedoms than it has control mechanisms to directly command each of those freedoms,
opposite to fully actuated robots, where each DoF is directly controlled.

Underactuated robots often rely on passive dynamics, such as gravity or mechanical
coupling between joints, to achieve desired movements and behaviours. By leveraging these
passive dynamics, underactuated robots can exhibit efficient and agile locomotion, adaptive
responses to disturbances, and environmental compliance. The reduced number of actuators
can lead to more lightweight and cost-effective designs. The design of underactuated robots
often prioritizes efficiency in terms of energy consumption and control effort. Underactuated
robots can operate with reduced power consumption and mechanical wear by minimizing
the number of actuators required for a given task. Underactuated robots find applications
in various fields, such as legged robotics, robotic hands and manipulators, aerial robotics,
and underwater robotics. The rest of this section will analyze balancing and hopping
underactuated robots.

2.1 Underactuated Robots 11

(a) (b)

Figure 2.4 (a) Pendulum on a cart [2]; (b) Rotary inverted pendulum [3].

2.1.1 Balancing Robots

Underactuated balancing machines generally don’t have direct control over the support point
on which they balance. Literature is rich with examples of balancing machines often used
to test and validate new control techniques, with the most common type being the inverted
pendulum. It is because of its open-loop instability and highly nonlinear characteristics
combined with a simple mechanical design and physical realization; furthermore, it can
be used to describe bipedal locomotion [35]. The most common examples of the inverted
pendulum are

• Pendulum on a Cart,

• Reaction Wheel Pendulum, and

• Double Inverted Pendulum.

Pendulum on a Cart

The pendulum on a cart is a well-known and deeply studied balancing device used extensively
in education contexts. It consists of a single (or double) link inverted pendulum pivoted on
a sliding cart (Figure 2.4a), or a rotating rod [36] (usually called the Furuta Pendulum [3])
(Figure 2.4b). In both cases, the system doesn’t have direct control over the stick’s angle but
it has only horizontal or rotary control over the support. Multiple and various techniques have
been tested over the years to balance such mechanisms, such as pole placement [37], neural

2.1 Underactuated Robots 12

(a) (b)

Figure 2.5 (a) Reaction wheel pendulum [4]; (b) Inverted double pendulum [5].

networks [38], fuzzy-logic [2], sliding mode and Linear Quadratic Regulator (LQR) [39] for
the linear model; and LQR control with refined Proportional Integrative Derivative (PID) [40]
or Proportional Derivative (PD) and fuzzy logic [41] for the rotary model.

Reaction Wheel Pendulum

The Reaction Wheel Pendulum (RWP) is another example of a planar inverted pendulum,
Figure 2.5a. The 3D extension of the RWP is called reaction mass pendulum [42], and the
authors use it to map the momenta of a humanoid body. Applications of reaction wheel
machines are of great interest because they are not only limited to terrestrial machines, like
in [43], where the authors equip a quadruped Unitree A1 with two reaction wheels to increase
its stability and disturbance rejection, but can also be found in aerospace devices [44],
especially for precise attitude control of satellites [45]. The RWP consists essentially of a
stick with an actuated symmetric link attached to the end whose rotation axis is parallel to
the axis of rotation of the pendulum [46], which is generally fixed to the ground. In [47], the
authors design, build and control a low budget RWP. They can then swing up and stabilize
the pendulum using an energy-based strategy relying on an observer stabilizing controller
and a two-stage bang-bang swing-up controller. Another example of RWP can be found
in [4], where the authors apply for the first time a simplified version specific for RWP of the
balance controller developed in [18] on a real robot called Tippy. Other examples of more
sophisticated RWP can be found in Cubli [48], a cube-shaped robot able to balance both in

2.1 Underactuated Robots 13

2D on a single edge and in 3D on a vertex. In [19], the author takes a step further in the
generalization of the balance controller used in [4], trying to balance in simulation Tippy
with an asymmetric reaction wheel; this modification essentially transforms the RWP into a
inverted double pendulum, resembling Acrobot [49].

This thesis will present and test a planar balancing machine which can be described as a
RWP and the balance controller used to control it. This is part of the bend-swivel balancing
strategy that Skippy will use to balance in 3D, as anticipated in [50].

Inverted Double Pendulum

The inverted double pendulum consists of two links connected by a revolute joint (joint 2), as
shown in Figure 2.5b, where the first link is connected to the ground through a revolute joint
(joint 1). Such a model can be used to represent the dynamics of a biped standing on one
point foot, where the configuration can be described as a inverted double pendulum with a
controllable counterweight [51]. We can identify two types of underactuated inverted double
pendulum; the first has joint 1 actuated and joint 2 passive, like Pendubot [52], the second
type, instead, has the first joint passive and the second one actuated, similar to Acrobot [49].
These robots have been designed and used mainly to test newly developed non-linear control
algorithms with the intent to stabilize the device in an unstable equilibrium point. In this
thesis, greater attention will be devoted to the second type of machine because it is how
Skippy will be modelled to balance in the sagittal plane.

2.1.2 Hopping Robots

In the case of hopping machines, we can divide the category into two main branches:
bio-inspired and technology-inspired. To the first case belong the Kangaroo-like robots
of [31] and [53], or the locust-inspired TAUB [54] or the frog-inspired Grillo [55] or flea-
inspired [56]; a comprehensive review of biologically inspired jumping robots is presented
in [57]. The second class, instead, includes robots like MSU Jumper [58], Acrobot [59], and
Raibert’s hopper [30], with the last two robots belonging to the category of the one-legged
robot. Among these robots, some of them, such as Raibert’s hopper [30] or Carlési and
Chemori’s Kangaroo [31] are capable of continuous hopping, others such as Zhang et al.
jumping robot [33] or Scarfogliero’s Grillo [55] can make only one hop at the time, being
propelled by wind-up-and-release mechanisms.

One-legged robots are comprised of a single leg, typically with two or three links and at
least one actuated joint. These robots serve as a basic model of mobile-legged robots and are

2.1 Underactuated Robots 14

(a) (b)

Figure 2.6 (a) Linear actuation [6]; (b) Angular actuation [7].

frequently utilized as a testing ground for novel control algorithms or mechanical designs [7].
This thesis identifies two primary types of one-legged robots, distinguished by the type of
actuated joint: linear (Figure 2.6a) and angular (Figure 2.6b).

Linear Actuation

The most famous and relevant hopping robot with linear actuation is Raibert’s hopper [30].
More than 40 years ago, the author was able to build and control first a planar monopodedal
hopper and then spatial one. The planar version of the robot consists of a telescopic leg and
a torso connected by a hinge-type joint. The torso carries the actuators, while the leg is a
pneumatic cylinder that acts as a spring. Position and orientation of the robot are estimated
through the instrumented supporting boom. In the planar version, the robot has five motion
DoF and only two actuators, one to stretch the leg and one to change the angle of the torso
with respect to the leg. The robot has nine DoF and one extra actuator at the hip in its spatial
version . The purpose of the extra actuator is to allow the leg to swing in any direction relative
to the torso. The supporting boom is removed and all the sensors and interface electronics
are contained in the robot’s body. In both cases, the power supply and computational unit are
not on board and are connected to the robot with an umbilical cord. Raibert broke the control
of such a robot (modelled as a Spring-Loaded Inverted Pendulum (SLIP) [60; 61]) into three
separate parts, consisting in controlling hop height, forward speed, and attitude of the torso,

2.1 Underactuated Robots 15

allowing the robot to hop while moving in space continuously. The three-part controller has
then been improved in recent years in [62], with the authors modifying the height controller.

Another example of a linearly actuated leg is presented in [63] where the authors modify
Raibert’s hopper to make it fully autonomous, and they replaced the pneumatic actuator
of the leg with a voice coil actuator in parallel with two compression springs. In [64], the
authors modify Raibert’s hopper inserting a series elastic element between the actuator and
the leg and they developed a high-order partial feedback linearization algorithm to control
the robot’s Centre of Mass (CoM).

Angular Actuation

Most quadruped robots have legs built with angular actuators. Legs’ mechanisms can be
serial chains, like in HyQ or ANYmal, or parallel chains, like in Delta-Quad [65] and
Minitaur [66]. In [67], the authors use a scaled version of Minitaur’s 5-bar mechanism leg
to analyze the effects of leg configuration and leg length ratio on running stability and hop
height. The experimental setup is similar to [68], with the leg connected to an instrumented
1.5m aluminium rod with multiple functions such as constraining the motion of the leg,
carrying the umbilical, and giving information about the robot position thanks to its encoders.
The authors found the best ratio of the length of the links theoretically and validated it
experimentally to achieve great speed, stability, and high hops.

Some monopedal robots try in a certain way to mimic the structure of animals’ legs, being
usually composed of a foot connected by a revolute joint (ankle) to a lower leg connected
in turn via a generally actuated revolute joint (knee) to the upper leg, with some designs
trying even to mimic the muscles behaviour [69]; others, like in [70], try to exploit the
mechanical characteristics of the motors to design a monopod and a quadruped robot. One
of the most famous examples of hopping monopedal robots is Salto-1P [71] which is an
improved version of the Salto robot [72]. Salto-1P is an untethered lightweight robot with a
total mass of 0.098kg, less than 150mm tall, and able to jump as much as 1.25m vertically
and 2m horizontally, thanks to a series-elastic actuation for the leg, and it relies on thrusters
to control its yaw heading. It has been intentionally designed to be a SLIP to have its control
be as simple as possible based on Raibert’s controller [30]. Unlike Raibert’s hopper, Salto-1P
is untethered. It is equipped with batteries to power the motors. However, it still depends on
an external motion capture environment to provide position feedback and a ground station to
estimate body velocity, desired leg lengths, and touchdown angles. The authors claim that
using the attitude provided by the motion capture system prevents drifting due to the onboard
gyro integration error.

2.2 Onboard Sensors 16

An example of a spring-loaded hopping and running robot is the 2D bow leg robot [73]
and its 3D version [74]. It is essentially a single leg made of a curved leaf spring, a foot, a
freely pivoting hip and a string that holds the leg in compression. The leg servomotor controls
the angle of the leg before impact; a second motor rewinds the bowstring to compress the
spring determining the height of the following hop. The hopper is capable of hopping to a
location and crossing various obstacles.

2.1.3 Skippy’s Design Novelty

Skippy is intended to merge most of the features of the robots described in the Sections 2.1.1
and 2.1.2 into a single machine. It is designed to be fully autonomous, untethered, able
to balance in 3D, continuously hop and make somersaults or other athletic manoeuvres.
Skippy doesn’t require any safety net or external protection system because it is designed
to be shockproof and to be able to withstand crash landings due to accidents and mistakes.
Moreover, all the computational effort is carried on onboard and with the operator able to
start, stop, and log the experiment remotely.

Skippy will balance in 3D by merging the features of a double inverted pendulum and
a reaction wheel pendulum in the so-called bend-swivel controller, first introduced in [50].
Skippy has only two actuators, one responsible for balancing the double inverted pendulum
in the sagittal plane, the other actuating the reaction wheel to keep the sagittal plane vertical.
The former is also accountable for making Skippy hop high; to increase the mechanical
power and energy efficiency, curved regressive leaf springs are placed in series to the motor,
and a passive spring-loaded ankle interfaces the leg to the ground.

2.2 Onboard Sensors

Autonomous mobile robots rely only on onboard sensors to estimate their position and
orientation in space. In particular, Skippy is equipped with absolute encoders to know the
internal angles of the mechanism, quadrature encoders to measure motors’ velocity, and an
Inertial Measurement Unit (IMU) to estimate its absolute orientation.

Since Skippy is a hopping robot, it will be subjected to considerable impulses whenever
it lands on the ground or makes a crash landing. As Skippy is a monopedal robot, there
needs to be a considerable amount of built-in shock protection for it not to have fatal falls
from heights as high as 3 metres. However, to determine the accurate amount of cushioning
without bulking up the weight of the robot unnecessarily, Skippy needs to have just the right

2.2 Onboard Sensors 17

amount of shock-protective foams and sensors that work while the robot is subjected to
the worst-case shock profiles. To the author’s knowledge, no previous work in the robotics
literature focuses on the mechanical shock testing of single components. Prior publications
only considered the effects of such impacts on the assembled robot [75] or in the design
process of the robot itself [76], with the intent of avoiding or mitigating them.

Skippy is designed to hop continuously; this motion causes the system to withstand what
is referred in this thesis as low impact accelerations for a prolonged period of time. This
motion doesn’t affect the optical sensors, such as the encoders. Still, it may cause unexpected
behaviour in inertial sensors, such as a drift in the IMU measurements.

2.2.1 Inertial Measurement Unit

The accuracy of Micro-Electromechanical Systems (MEMS) sensors for state estimation dur-
ing dynamic behaviours has been previously studied but under different working conditions
to those considered in this thesis.

Position estimation using IMUs has been addressed by [77], where the authors propose
a cascaded Kalman filter with a fusion of GPS and IMU data for trajectory tracking. In
humanoid applications, high-quality measurement of the floating base orientation can be
achieved with an IMU, but achieving high-precision positioning with low drift remains a
significant challenge. [78] describes different optimisation strategies and a state estimation
algorithm to execute walking over non-flat terrains with the Atlas humanoid [15]. The
authors used an IMU mounted on the pelvis to obtain its pose and twist. To reduce the drift
of the robot measurements, they used an inertial and kinematic estimator, which was proven
unsuitable for accurate walking over distances of tens of meters. They finally added a LIDAR
to achieve the task. Instead, [79] analyses the effects of IMU drift on a walking person
by using an IMU to estimate the vertical motion of the foot. However, the experiment is
relatively short since the subject takes only a few steps. [80] uses a MEMS IMU to estimate
the position of a walking person in an indoor environment where no GPS signal can be used.
It calculates the body’s location while moving, but the precision required is not the same as
the one required by most robot-control algorithms.

On the topic of orientation estimation, in [81], the authors attempt to reduce the effect
of drift in orientation tracking for a virtual reality head-mounted display. The sensor is
mounted directly on the headset, and it experiences continuous motion but with very low
accelerations. [82] presents a three-dimensional model of a quadruped robot with six degrees
of freedom at the torso and five at each leg executing a 3D trotting gait. During these

2.3 Balance Controllers 18

experiments, the IMU (mounted on the robot’s torso) experiences a severe drift on the yaw
signal. The authors believe this drift was caused by the magnetic field excited by the motor
in the treadmill. [83] proposes a cascaded two-step Kalman filter to compensate for external
ferromagnetic disturbance or large impulsive acceleration (such as a single jump) or medium-
long acceleration (roller-blade outdoors). [84] avoids the use of magnetometers to estimate
the foot progression angle by means of IMU data. However, the experiments are limited
to only a few steps and only to people walking because the authors sustain that estimation
algorithms can be prone to magnetic distortion and inaccuracies after walking starts and turns.
The effects of continuous low amplitude accelerations (e.g. a person walking) on orientation
estimation have been addressed by [85]. In this work, the authors collect accelerometer
and gyroscope raw data from people walking on a treadmill. Then, they process those data
offline using a custom filter to compensate for drift and estimate the correct orientation. Such
a strategy is often not feasible for embedded systems, which typically lack memory and
computational power and must rely on the sensors’ orientation data in real time.

IMUs have become popular also in the field of wearable devices. In [86], the authors com-
bine an air-pressure and IMU sensor to recognise human activities. At the same time, in [87],
they use a chest-worn band equipped with a breathing sensor and tri-axis accelerometer to
measure respiratory parameters and identify human activities. A comprehensive literature
review can be found in [88], where the main focus is IMU-based wearable devices in sports
medicine.

2.2.2 Sensor’s Testing Novelty

One contribution of this thesis consists of systematically analysing the behaviour of Skippy’s
sensors in extreme and potentially troublesome situations employing a purpose-built testing
apparatus. More specifically, the encoders have been tested with high acceleration impacts,
mimicking a crash landing of Skippy after a hop or an athletic manoeuvre. Also, the behaviour
of the IMU will be evaluated while subject to continuous low acceleration impacts, similar to
those experienced by the robot while continuously hopping.

2.3 Balance Controllers

All the robots described in Section 2.1 rely on ad hoc balance controllers to maintain stability
at unstable equilibrium points. Typically, the control algorithms consist of a set of symbolic
equations that express force variables using the robot’s kinematic and inertia parameters

2.3 Balance Controllers 19

as well as state and acceleration variables. A feedback control law formula is then derived
from this set of equations. Since these controllers are based on the closed-form equation
of motion of the robot mechanism, they are specific to that particular device and cannot be
utilized on different machines. Additionally, they are generally limited to stabilizing [9; 90]
the mechanism and cannot enable the actuated joint used for balancing to do any other task,
such as tracking a desired trajectory.

2.3.1 Dynamic Balancing

Dynamic balancing is the robot’s ability to maintain its centre of mass above its support point
over which it may not have direct or complete control while performing other tasks. Dynamic,
or active, balancing requires the robot’s actuators to work continuously to keep the robot
balancing without falling; meaning that the robot cannot balance in such configurations when
the motors are powered off, contrary to static or passive balancing, where it can balance on a
stable support point without needing any motion of its actuated joints. Dynamic balancing
can be achieved using balance controllers relying on the robot’s angular momentum, such as
Featherstone balance controller [18], which is the one that will be used to control Skippy in
this thesis.

Balance controllers based on angular momentum are not a new invention in the robot
control field. Their first implementation goes back in time, and it has various applications.
In [89], the authors model a humanoid robot trying to balance on a single leg as an inverted
double pendulum where only the ankle joint is actuated. This approach has been improved
and deployed on iCub in [8], where the humanoid can balance on one foot while performing
other activities with the other limbs, see Figure 2.7a. Angular momentum balance controllers
are also used to balance robots on unstable supports; in [9], the authors balance and steer a
bicycle, changing the angular momentum of two coaxial flywheels assembled on the bike
(Figure 2.7b). In [90], the authors modify the angular momentum-based balance controller
developed in [91] to stabilize a planar three-link robot composed of three joints (two of which
passive). The ground is connected with a passive joint to the first link which is connected to
the second link with the other passive joint. The only active joint connects the second link to
the third one.

The most famous balancing machines, such as Cubli [48], Pendubot [52], or Acrobot [49],
achieve balance on fixed single contact point—typically a shaft for Pendubot and Acrobot, or
a cube edge for Cubli—and are not designed to move while balancing in space (although
Cubli can "walk" by combining consecutive balancing and controlled falling).

2.3 Balance Controllers 20

(a) (b)

Figure 2.7 (a) IIT iCub balancing on a leg [8]; (b) Bicycle with flywheels [9].

In the context of legged robotics, quadrupeds can perform balancing on two legs. Many
quadruped robots are typically equipped with ball feet. While these feet are relatively small
compared to the overall size of the robot and provide a reasonable approximation of point feet,
these robots are not specifically designed for maintaining balance on two feet. It has been
demonstrated that the balance controller proposed in [18] can be applied to real quadrupeds
like HyQ [92]. However, due to its complex mechanical structure, achieving balance has
proven to be a challenging task, and the robot was only able to maintain static balance on two
feet without actively controlling the other joints not involved in balancing. Another example
of balance in quadruped robots can be found in [93], where the authors demonstrate balancing
the MIT Mini Cheetah on two feet using a variational-based linearization technique to solve
an unconstrained linear quadratic regulator problem that takes into account the orientation of
the robot’s torso.

Another category of quadruped robots combines wheeled locomotion on even surfaces
with legged locomotion on uneven or unstructured terrains. In these robots, the foot is
replaced by actuated wheels, allowing certain robots (e.g. ANYmal with wheels [94]) to
maintain balance on their hind legs with wheels. The authors employed a whole-body
Model Predictive Controller (MPC) to achieve highly dynamic motions, and in [95], they
utilize reinforcement learning techniques to enable the robot to balance on its wheeled hind
legs and navigate in space. This behaviour resembles an inverted pendulum, similar to the

2.4 Thesis Contributions 21

well-known Segway [96] (also called Self Balancing Robot (SBR)), which has been the
focus of numerous control strategies such as linear-quadratic regulation [97; 98], intrinsic
geometric PID controller [99], or optimal control [100]. MPC can also stabilize and reject
disturbances while balancing this type of robot. In [101] the authors propose a MPC solution
to stabilize a SBR in simulation. In [102], the authors use MPC to stabilize an unstable
heavy SBR developed in their laboratory. Due to the high computational effort required by
the model predictive approach, the authors were forced to use a simplified plant model to
allow the control to run online on the robot’s control unit. Neither [101] nor [102] attempt
any trajectory tracking, limiting the behaviour to balancing and disturbance rejection. The
Ballbot [103] provides an example of an inverted pendulum that balances in 3D, with a
stick balancing on a ball. The ball is actuated using an inverse mouse-ball drive, and the
balance controller consists of two independent PID controllers, one for each of the vertical
planes [104]. In [105], the authors employ a sliding-mode controller with a single-loop
control system to track and balance the Ballbot.

2.3.2 Skippy’s Controller Novelty

This thesis intends to implement and further develop the angular momentum balance con-
troller proposed by Featherstone in [18], which has its roots in [50; 91]. This controller
enables a robot to balance on a non-actuated fixed contact point while simultaneously tracking
a desired trajectory for the actuated joint responsible for balancing. One of the goals of this
thesis is to expand Featherstone’s 2D balance controller from a fixed single contact support
point to a rolling contact support point description. The newly developed controller will then
be used to stabilize and move a stick-on-a-wheel robot, which is similar to a bidimensional
Segway [106].

2.4 Thesis Contributions

This thesis aims to give the reader a better understanding of the manufacturing and controlling
process of Skippy. The design of the mechanical components is out of the scope of this work,
and individual parts or mechanisms will be described only in selected circumstances.

This thesis proposes self-implemented testing techniques to evaluate the performance of
the sensorimotor system of a robot in extreme or unexpected working conditions. Knowing
the limits and constraints of the sensorimotor system is vital in designing highly dynamic
robots and their control system.

2.4 Thesis Contributions 22

Once confirmed that sensors and actuators are fit for Skippy, this thesis describes the
intermediate steps taken in the building process, starting from the most straightforward
configuration, an inverted reaction wheel pendulum balancing in 2D, to the most complex, an
inverted double pendulum with a springy leg balancing and hopping in 2D. This work lays
the foundation to fully control Skippy in 3D, which will be the objective of future works.

Chapter 3

Sensors Testing

Mobile robots strive to achieve athleticism and dexterity to navigate through rough terrain,
overcome obstacles, and perform agile movements. These actions generate impulsive dy-
namics that produce shocks, which can cause negative effects on the robot’s sensors and
mechanical components. Therefore, minimising the amount of shock propagating to the
robot’s torso is essential. Although cancelling shocks completely using the Centre of Per-
cussion concept is ideal [76], it may not be practical in some robot leg designs. Hence,
estimating shocks in terms of deceleration values, represented as g values, is crucial for
designing appropriate damping and passive shock-absorption methods to ensure safe and
reliable sensor operation, such as position sensors, IMUs, or cameras, within the robot.

MEMS, such as IMU, are embedded in almost all mobile robots thanks to the variety of
measured signals they provide. They contain on-board processing systems called Attitude
and Heading Reference Systems (AHRS), which combine the output of several sensors,
such as a 3-axis accelerometer, a 3-axis magnetometer, and a 3-axis gyroscope to estimate a
system’s attitude, using a variety of algorithms, the details of which are usually proprietary.
One particular computed output is the robot’s orientation, which must be accurate up to a
certain degree for the robot to operate as expected. Inaccurate estimation of orientation can
cause a robot to veer off course or lose its balance and fall. In this thesis, these systems are
generically referred to as IMU because it is in this way that the larger audience usually calls
them.

The continuation of this chapter will analyse in depth the effects of high acceleration
mechanical shock tests on absolute and quadrature encoders and the effect on a selection of
IMUs of substantial oscillations in vertical acceleration caused by the alternation between
flight phase and stance phase during fast legged locomotion. This systematic approach
is essential to guarantee all the sensors’ correct and expected behaviour during Skippy’s

3.1 Encoders Testing 24

activities. The athletic and highly dynamic manoeuvres of Skippy put under stress all
the electronic components, being subject to continuous vertical accelerations in case of
continuous hopping behaviour or high decelerations due to falls while hopping. This testing
approach evaluates each type of sensor individually, allowing the designer to select the
most suitable sensor for the desired task. Furthermore, the control system must be aware
of possible sensors’ malfunctioning in advance to compensate for or mitigate them with an
appropriate control strategy.

The Skippy team has developed content of this chapter and its outcome has already been
published. Specifically, the results obtained in Section 3.1 have been published in [107]
(© 2023 IEEE, reprinted with permission), and all the figures and tables in Section 3.1 are
taken from it. My contribution to Section 3.1 consisted of

• the definition of the experimental procedures,

• the execution of the experiments,

• the data collection, and

• the analysis and presentation of the collected data.

The work proposed in Section 3.2, instead, has already been published in [108], and all the
figures and tables in Section 3.2 are taken from it. My contribution was to

• design and build the testing apparatus,

• write the acquisition software for the BNO055 IMU,

• integrate the acquisition software of the 3DM-GX5-15 IMU,

• perform the experiments,

• post-processing of the collected data, and

• analyse and present the obtained results.

3.1 Encoders Testing

This section investigates the behaviour of Skippy’s encoders when subject to high accelera-
tions caused by a mechanical shock to determine if it causes any malfunctions and whether
the encoders can recover from the impact. A situation like this can happen during a crash

3.1 Encoders Testing 25

Figure 3.1 Catapult qualitative representation.

landing and when the foot hits the ground during normal and high hopping. Additionally, this
study aims to provide users with more detailed information about shock resistance than what
is typically provided by vendors, and a methodology for testing self-made electronics, such
as the data acquisition system. While some data sheets, such as that of the AksIM-2 rotary
absolute encoder [109], guarantee to function during shocks up to 100 g (6 ms, half-sine,
according to EN 60068-2-27:2009), they do not provide information about recovery from
more significant or different types of shocks. Other data sheets, like that of the Maxon ENX
16 EASY incremental encoder [110], do not mention shock resistance at all. As a result of
this experiment, a simple methodology for testing such devices has been developed, which
evaluates the impact without using expensive or fragile accelerometers or IMUs typically
found in robotics laboratories, which have a saturation limit lower than the amplitude of the
shock impact. The experimental procedure is simple and effective. It consists of slamming
an actuator, a set of rotary sensors and their computational unit against a cushion using the
spring-loaded catapult presented in [141§ 6.3.3]. During the initial impact and subsequent
rebounds, all information received from the sensors is logged.

3.1.1 Experimental Setup

The equipment required for this experiment includes the following components: a DC motor,
the slamming catapult, a cushion, the computational unit of Skippy (referred to as the ‘Brain’),
and the two encoders under test, see Figure 3.2.

3.1 Encoders Testing 26

Figure 3.2 Experimental setup. Catapult at rest (top), catapult lifted (middle), and catapult
bouncing (bottom).

3.1 Encoders Testing 27

Length of the catapult arm [m] la 1.03
Distance of the specimen [m] ls 0.98
Distance of the brain [m] lb 0.8
Mass of arm and specimen at the tip [kg] m 1.4
Pulley radius [m] lr 0.120
Spring stiffness [N/m] k 147
Number of springs n 4

Table 3.1 Catapult specifications.

Catapult

The spring-loaded catapult is the tool used in this experiment for shock-testing the specimen
(Figure 3.1, Table 3.1). Instead of the typical catapult mechanism where the specimen is
released, our set-up involves securing it firmly to the aluminium arm [111] and slamming it
into a cushion. We utilize four linear springs that connect the pulley of the catapult to a fixed
base. The springs are connected to the pulley through a rope that rotates the pulley. The arm
of the catapult is directly connected to the same rotary joint as the pulley. We measure this
angle using an absolute rotary encoder (more details in Section 3.1.2), an integral component
of the catapult itself. The specimen is placed at the tip of the catapult’s arm.

The catapult uses the previously mentioned springs to store and release energy for
slamming objects into the cushion. An operator manually lifts the arm to an angle that will
result in the desired impact conditions (e.g. a given velocity at impact) and releases it. At the
moment of impact, all the springs have already returned to their rest length, no longer storing
potential energy. The catapult arm is assumed to be perfectly rigid.

Cushion

The cushion consists of two layers of 2 cm thick self-adhesive high-density foam on a wood
block. The thickness of the block is chosen such that the arm of the catapult rests horizontally
on the cushion. The cushion is fixed on the workbench and compresses when the catapult hits
it, simulating the effect of a crash landing. The material used in this experiment is similar to
the protective cushioning employed to reduce the impact of a crash landing on Skippy.

3.1 Encoders Testing 28

Brain

It is the computational unit used in this experiment and in Skippy. It is responsible for
sampling and logging all the sensors through all the slams. A complete description of the
Brain can be found Section 4.4.4 and in [112].

Specimen

At the end of the catapult arm, there is a frame that carries the motor and both encoders,
which is the specimen used in this experiment. The DC motor utilised in the experiment is a
Maxon DCX22S GB KL 24V [110], which is powered by a constant voltage from a bench
power supply to maintain a constant speed of 7700 rpm. This speed was chosen to avoid
exciting any resonances in the catapult arm. The motor is equipped with an ENX 16 EASY
incremental encoder, which is one of the two encoders being tested. Additionally, the motor’s
output shaft is connected through a coupling to a shaft that carries the magnetic disc of an
AkSim-II rotary absolute encoder [109], which is the second encoder under test. Since both
encoders measure the same angle, their measurements should agree. A detailed description
of the components of the specimen can be found in Section 3.1.2. The vertical position of
the specimen varies depending on the angle of the catapult and it is defined as follows:

zs = ls sin(θs) (3.1)

where zs is the position of the specimen with respect to the z axis and θs is the angle between
the x axis and the catapult arm (positive in the counterclockwise direction), see Figure 3.1.

During the whole experimental procedure, the whole mechanical structure vibrates when
the motor rotates. This is due to a slight misalignment between the two shafts in the specimen.
As a result, both encoders are exposed to these vibrations, leading to testing of the encoders
under the influence of combined shock and vibration, even though it was not the initial
objective of the experiment.

3.1.2 Data Acquisition System

The data acquisition system comprises a computational unit (the Brain), two absolute rotary
position encoders and one incremental position encoder. The sampling frequency for the
experiment is 5kHz, which is the same frequency that Skippy will use in it’s control loop. The
measured angles are unwrapped by the signal processing software to produce measurements
of the total amount of rotation since the start of the experiment. This step facilitates the

3.1 Encoders Testing 29

comparison of encoder readings and allows us to spot cumulative errors, if present. The
Brain provides power to all the encoders. The incremental encoder and the motor absolute
encoder form the specimen that undergoes shock testing.

Absolute rotary encoders

The two absolute rotary encoders are RLS AksIM-2 [109] with different sizes and configura-
tions of magnetic rings and read-heads and they are mounted on the motor and the pulley,
respectively. In the continuation of this section, such encoders will be referred to as

• Motor encoder: it is employed for directly measuring the angular position of the
shaft that is connected to the motor. It has a magnetic ring of 29mm diameter and an
angular position resolution of 18 bits, and its hardware configuration, as defined by the
manufacturer, is as MB029DCC18BFNT00 (see [109]).

• Catapult encoder: it is employed to determine the angular position of the arm of the
catapult, θs, in relation to the x axis, as depicted in Figure 3.1. It has a magnetic ring
of 39mm diameter, an angular position resolution of 17 bits and the capability to track
the number of revolutions. Its hardware configuration, as defined by the manufacturer,
is as MB039DCC17MEDT00 (see [109]).

They are both sampled by the Brain via the BiSS-C interface, with a clock frequency of
3.8MHz. The data from the encoders are converted into radians and then logged.

Incremental encoder

The incremental position encoder is a Maxon ENX 16 EASY [110]. The incremental interface
generates 4096 steps per turn. The encoder is sampled by the Brain’s Enhanced Quadrature
Encoder Pulse (eQEP) module [113]. The eQEP register is read together with the absolute
encoders, and its value is converted into radians before being logged.

3.1.3 Experimental and Analysis procedure

The experiment presented in this section aims to investigate the behaviour of the encoders
intended to be used in Skippy. We designed an experiment to investigate the behaviour of the
encoders during and after mechanical shocks, comparable to those expected during controlled
high hopping and accidents, such as crash landings, which Skippy is expected to survive.
Given the hardware’s limitations, the analysis complies with the standard 60068-2-27 [114]

3.1 Encoders Testing 30

0 5 10 15 20 25

0

0.2

0.4

0.6

0.8

1

Figure 3.3 Specimen’s vertical position during multiple slams. The red line is 10 times
the measured angular position of the catapult, the blue line is the estimated velocity of the
specimen and the yellow line is the specimen’s interpolated velocity during the rebound.

as closely as possible as described in the following section. The experiment also tests the
robustness of the Brain against shocks.

Experimental Procedure

At the beginning of the experiment, the catapult arm is in a resting position and is aligned
with the x axis, as illustrated in Figure 3.2. The operator manually lifts the arm until it reaches
the physical end-stop, causing the arm to be parallel to the z axis, Figure 3.3. The arm is
then released, resulting in a rotation around the revolving axis of the pulley (y axis) and a
subsequent impact with the foam. To comply with the IEC international standard 60068-2-
27 [114], three consecutive slams should be performed with the same initial conditions, and
the specimen should be shock-tested in each direction. However, due to hardware limitations,
the specimen is only tested with shocks perpendicular to the rotation axis of the motor.
Since the system is symmetric with respect to the rotation axis of the motor, only one shock
direction is physically tested. The experiment can be viewed in the accompanying video
of [107].

3.1 Encoders Testing 31

7.4 7.45 7.5 7.55 7.6 7.65 7.7 7.75

-8

-6

-4

-2

0

2

4

6

8

10

v
reb

v
min

 Rebound

Figure 3.4 Velocity of the specimen before and after the impact.

Analysis Procedure

The analysis of the data collected during the shock experiments is split into two stages. Firstly,
the peak impact is estimated and then the consistency of the measurements is examined
throughout the multiple impacts.

Shock Estimation
The estimation of the vertical impact suffered by the specimen has been carried out starting
at the point when the catapult is released from a vertical position. To determine the velocity
of the specimen, the change in measured position is differentiated with respect to the time
difference between two successive samples. To filter out undesired high-frequency noise, a
third-order low-pass Butterworth filter is applied. The velocity signal is first transformed
to the frequency domain using a Fast Fourier Transform (FFT) and filtered using a cutoff
frequency of Fc = 115Hz, which complies with the 60068-2-27 standard. According to the
standard, the lower limit of the cutoff frequency is fg =

1.5
D , where D is the duration of the

shock, which in this experiment is D = 14.6ms, hence fg = 103Hz. To ensure accuracy, only
the interval of time containing the shocks is differentiated and filtered (Figure 3.4). Each
experiment starts with a velocity of 6.8m/s just before impact, which is equivalent to a crash
landing of a body falling from a height of 2.36m.

3.1 Encoders Testing 32

7.55 7.56 7.57 7.58 7.59 7.6 7.61 7.62 7.63

-1500

-1000

-500

0

500

1000

1500

2000

2500

Figure 3.5 Acceleration peak and half sine shape mask.

The velocity signal obtained from the rebound of the specimen showed unexpected
oscillations at a frequency of 95Hz, which were found to be caused by the bending of the
catapult arm. This led to an overestimation of the rebound velocity. To compensate for this,
the rebound velocity was determined as the intersection of the least-squares fit yellow straight
line, which interpolates the curve (see Figure 3.4), and the moment when the specimen loses
contact with the foam (intersection of vertical line and slope of velocity in Figure 3.4). It was
observed that the initial assumption of the catapult arm as a perfectly rigid body was incorrect,
as the arm bends upon hitting the cushion and then vibrates, causing an overestimation of the
peak acceleration. As per the standard, the acceleration should be enclosed in the ‘Half Sine
Shape’, which defines the nominal value of the amplitude of the shock A (Figure 3.5) as

A =
π ∆V
2D

=
π (vreb − vmin)

2D
= 128g (3.2)

where ∆V is the velocity variation, vreb is the rebound velocity, vmin is the impact velocity
and D is the duration of the shock.

Catapult Arm Bending
To confirm the bending of the catapult arm, a simple experiment was conducted. A small
and lightweight peg was placed in a hole next to the foam, which had a frictional fit. The
compression of the foam was measured by observing how far the catapult arm pushed the

3.1 Encoders Testing 33

peg into the hole. The difference between the initial position of the peg (which was at 0
on the z axis) and the final position after being hit by the catapult was used to determine
the actual compression of the foam. The experiment resulted in a measured compression of
3.2cm, while the value calculated from the measured angle of the catapult was 4cm. This
difference of 0.8cm implies a bending of 0.4cm of the catapult arm at its centre, causing
significant oscillations, and hence making it incompatible with the shock-testing standard.
Consequently, the shock information on the AksIM-2 datasheet [109] doesn’t apply to our
experimental setup.

Motor Position
Both encoders of the specimen measure the same angular position of the rotating motor. Both
motor angular positions are unwrapped; in this way, the signals lose the discontinuity typical
of the angle of a motor rotating always in the same direction, and it is possible to compare
them. The angular position of the motor has a constant velocity at 7700rpm due to the steady
power supply, resulting in a linear trend.

In this thesis, the difference between the measurement of the motor’s absolute encoder
and the incremental encoder is defined as the motor position error, or simply the error.
This error is assessed at various intervals, both before and after the shock. At the start of
each interval, the unwrapped position of each encoder is reset to zero, to account for any
initial offsets caused by the assembly of the encoders. When the motor begins to rotate, the
incremental encoder begins counting from zero, whereas the absolute encoder starts from the
position of the magnetic ring, which is determined by the physical angle of the ring.

The error is not assessed during the impact because the data received from the motor’s
absolute encoder are not valid. During the shock period, most of the data packets received
from the encoder have an incorrect Cyclic Redundancy Check (CRC) [115], indicating a
communication error. As shown in Figure 3.6, the data packets received from the motor’s
absolute encoder are not reliable during the contact phase of the shocks. This pattern is
observed in each slam and the subsequent three rebounds. Table 3.2 presents the average
duration of the communication inconsistencies, through three slams, relative to the duration
of the shock and the peak acceleration.

The quality of the signal from the incremental encoder is verified by recording the
latch value of the eQEP register. This register stores the count value every time the index
signal is high and is sampled synchronously. If the data acquisition system has not missed
any incremental count, the latch value should be 4095 (or 0 depending on the motor’s
direction of rotation). Although the sampled values are accurate during the shock, some

3.1 Encoders Testing 34

7.5 8 8.5 9 9.5 10

0

0.2

0.4

0.6

0.8

1

Figure 3.6 Validity of the motor absolute encoder measured position with respect to the
specimen vertical position. The blue bar highlights when most of the data received from the
motor encoder is not valid.

Shock N. Shock Dur. Peak Accel. [g] CRC Error Dur.
1 14.6 128 45.6
2 17.7 93 9.7
3 19.1 65 7.5
4 19.4 45 4.8
5 18.5 30 0

Table 3.2 Average values over three consecutive slams. Each slam causes four subsequent
rebounds where information is lost. Shock Duration (Dur.) and CRC Error Duration are in
milliseconds.

3.1 Encoders Testing 35

7.5 7.52 7.54 7.56 7.58

-0.02

0

0.02

7.64 7.66 7.68 7.7 7.72

-0.02

0

0.02

Figure 3.7 Position error θ between absolute and incremental encoder. Two intervals of time
are reported: before (graph above) and after (graph below) the shock. During the shock, data
are unreliable, so they are not presented.

malfunctioning of the encoder latched value has been observed. To determine the frequency
of this malfunctioning, the motor was spun at a constant speed of 7700rpm for one minute
without any shock. The sampling frequency was 5kHz. Out of 7700 turns, the latched value
was not as expected (4091 instead of 4095) on 12 occasions, which amounts to 0.16% of the
total cases.

The error was examined before and after the impact of the first slam (as shown in
Figure 3.7). It is evident that the shock does not affect the behaviour of the position error. The
primary component of the periodic trend of the error is attributed to a slight misalignment of
the rotating shaft concerning the motor and its holder, which causes vibrations at a frequency
of approximately 128Hz. The root mean square error (RMSE) and peak-to-peak error
(PTPE) were assessed over two 0.5second periods, one before and one after the impact. The
values obtained (shown in Table 3.3) and a segment of these time intervals (as illustrated in
Figure 3.7) demonstrate the reliability of the position measurement even after the impact. The
error’s magnitude is quite high, and it is a result of the vibrations generated by the rotating
motor and its holder, along with the misalignment between the magnetic ring of the absolute
encoder and the motor’s rotor. However, the shocks do not influence the error, indicating that
the encoders can survive the shocks or recover from communication problems, such as CRC
errors.

3.2 IMU Testing 36

Before Impact After Impact
RMSE [rad] PTPE [rad] RMSE [rad] PTPE [rad]

0.0073 0.033 0.0072 0.035

Table 3.3 RMSE and PTPE of the position error over two different periods of time T=0.5s.

3.1.4 Conclusions

The main contribution of this work is to demonstrate the importance of testing sensorimotor
systems and their computational units in failure scenarios (e.g. robot falls and crash lands).
These tests can assist in developing more robust robots and provide helpful knowledge that
can be integrated into the control system, such as the presence and duration of unreliable
sensor information during and after a crash.

The findings indicate that data is lost during the initial impact (at 6.8m/s) and three
subsequent rebounds, either due to communication or encoder hardware errors. The system
functions normally during shocks with peak acceleration up to 30g, which provides guidance
for designing robots that do not exceed this value during normal operations. This approach
can lead to more robust robots. The study tested the system under an extreme crash landing
scenario, where temporary errors are acceptable, but consistency is required during normal
operation. The experimental results show that information is lost from the absolute encoder
due to communication or hardware problems during the initial shock and the subsequent
rebounds. However, the data acquisition unit operated consistently in all situations.

To the best of the author’s knowledge, there are no high-impact crash-landing tests in the
current robotics literature because most robots are designed under the assumption that they
will not experience severe shocks. However, since accidents are likely to occur when robots
are used in real-world situations, it is critical to be aware of sensory limitations and carefully
consider them in the design process to ensure that the robot can survive such crashes and
continue to operate with minimal harm.

3.2 IMU Testing

Even though several legged robots have already demonstrated motions involving substantial
repetitive vertical accelerations [30; 116], the effects of these motions on IMUs have not
been properly investigated. To achieve consistent and reliable behaviours, legged robots must
be aware of their electronics’ limitations. This issue can be addressed at the design stage
by choosing an IMU that is accurate enough under the expected operating conditions, or it

3.2 IMU Testing 37

can be addressed at the control stage by adapting the robot’s motion planning and control
to make allowance for the IMU’s limitations. Either way, the first step is to identify and
measure those limitations.

This section investigates the effect on a selection of IMUs of substantial oscillations in
vertical acceleration caused by the alternation between the flight and stance phases during fast-
legged locomotion. It does this using a ‘bounce test’ apparatus, as described in Section 3.2.1.
This thesis refers to these oscillations as ‘low-acceleration impacts’ to distinguish them
from the much higher accelerations experienced during accidental collisions and falls of
Section 3.1. The motivation for this research is the lack of claims, both in the manufacturers’
and research literature, that these devices have been designed and tested for use under these
conditions. Specifically, the experiments reported in this section investigate the following
items: drift in the IMU’s orientation estimates during approximately vertical bouncing
motion; the timescale on which this drift occurs; and the time it takes the IMU to recover
after bouncing ceases.

3.2.1 Experimental Setup

The experiment investigates the effects of prolonged, continuous vertical bouncing motion
on the accuracy of orientation estimation on a selection of MEMS IMUs. The apparatus is
shown in Figure 3.8, and consists of a long rod with a rotary actuator at one end and the
IMUs at the other. Strictly speaking, this means that the IMUs travel along a circular arc.
However, the radius of the circle is large enough for it to be a reasonable approximation to
vertical motion.

Actuation System

The actuation system consists of a Magnet Schultz Rotary Solenoid Type G-DR-075X20A61-
S1 [117] powered by a Pololu G2 High-Power Motor Driver [118]. This solenoid produces
pure rotational motion and offers controllable bidirectional torque, making it easier to
measure the rotation angle and control it compared to most of the other so-called rotary
solenoids, which produce helical motion and do not allow controllable bidirectional torque.
The solenoid directly actuates one end of a 1 m carbon fibre tube of 20 mm external diameter
and 0.5 mm wall thickness. The tested specimen is placed on the other end of the tube,
opposite to the solenoid. The angular position of the tube is measured with an AksIM-2
absolute position encoder [119], sampled at 500 Hz by the National Instrument Single Board
sbRIO-9637 Field Programmable Gate Array (FPGA) [120], which also generates control

3.2 IMU Testing 38

Spring

Solenoid

Specimen

x y

Figure 3.8 Qualitative representation of the experimental setup. The spring is made with
rubber bands.

signals for the Pololu driver. The sampling frequency has been chosen to match the one used
to sample both the VN100 and the 3DM-GX5-15 IMUs. The spring shown in Figure 3.8 is
physically realized by means of rubber bands.

Specimen

The specimen consists of three independent IMUs provided by three different vendors; each
IMU has a different communication interface. They are mounted on a custom-made 3D-
printed support to allow them to have the y-axis aligned with the rotation axis of the solenoid
(see Figure 3.9).

VN100
The Vectornav VN100 [121] is the IMU that can measure the highest linear acceleration (up
to 16 g). It is sampled at 500 Hz, which is the maximum orientation estimate update rate
configurable for the device, by the sbRIO-9637 board using the SPI communication protocol.
The IMU chip is mounted on a custom-made PCB, and is the one used in Skippy and in all
the balancing machines in this thesis.

3DM-GX5-15
The Lord MicroStrain 3DM-GX5-15 [122] can measure linear accelerations up to 8 g. It
communicates through a USB interface with the software SensorConnect [123] provided

3.2 IMU Testing 39

Figure 3.9 Top view of the IMUs mounted at the end of the carbon fibre rod and their
reference systems. The perspective distortion in this photo makes the BNO055 and 3DM-
GX5-15 appear to be at an angle when in reality, they are aligned.

by the vendor. The IMU is configured to stream data at 500 Hz continuously and is directly
connected to the host PC using a USB cable. The 3DM-GX5-15 is the only tested IMU not
equipped with a magnetometer.

BNO055
The Bosch BNO055 [124] is assembled on a DFRobot breakout [125]. Despite the discon-
tinuation of the DFRobot breakout module, the BNO055 chip can be found in alternative
breakout modules offered by different suppliers, such as Adafruit [126]. It is the cheapest
among the tested IMUs (it can be bought for just a few tens of euros). The BNO055 provides
orientation data only when configured in ‘fusion mode’; such a configuration provides a 4 g
linear acceleration range and an output data rate of 100 Hz. The BNO055 does not have
any non-volatile memory to store the calibration data; hence every time it is powered on, it
has to be calibrated [124]. The gyroscope is calibrated by holding the IMU still for some
seconds, and moving the rod manually up and down proved to be sufficient to calibrate the
accelerometer. The magnetometer, instead, requires a 3D change in the orientation of the
device to get calibrated. Such movements are incompatible with our setup; consequently, the
IMU is never fully calibrated. An Arduino UNO board [127] samples the device at 100 Hz
by using the I2C communication protocol. This selection is used to compare professional
and expensive acquisition systems with a hobbyist and cheap one.

3.2 IMU Testing 40

Experiment Description

The experiment consists of continuously bouncing the tube against the rubber bands, which
act as a spring and push the rod back up. The solenoid’s torque (which is small compared to
the forces exerted by gravity and the rubber bands) is actuated with a constant voltage in the
same direction as the rod’s motion, and it is activated only when the rod’s angle, measured
by the encoder, is within a specified range (Figure 3.10). The lower bound of this range is
when the rod is about to touch the rubber bands, and the upper bound depends on the desired
maximum acceleration at the bounce: the higher the bounce, the higher the acceleration. The
system is tuned to have the bounce apex always above the upper threshold of the applied
torque range. The strategy of applying a constant torque over a constant (angular) stroke
implies a constant energy injection per bounce so that the apparatus will converge and settle
to a steady state in which the bounce height is such that energy losses match energy inputs.
The idea is to have a smooth transition between the stance and flight phases, which are the
two components of the continuous bouncing behaviour of a hopping robot.

The experiment starts by turning on the apparatus, and then a sufficient amount of time is
allowed to let all the sensors power on correctly. At this point, the rod is manually moved up
and down until the BNO055 is partially calibrated. The following phase starts by logging
the sensors with the rod at rest position for about one minute. The data from all the IMUs
are recorded. Then, the rod is manually pushed downwards against the rubber bands to start
the bouncing motion (Figures 3.12, 3.18 and 3.24), which continues for about three minutes.
Finally, the solenoid is switched off so that the bouncing ceases, and the system continues
logging the sensors for another minute with the rod remaining still at its rest position (Figures
3.13, 3.19 and 3.25).

The data collected from the IMUs are the compensated linear accelerations, the compen-
sated angular velocities and the quaternions. The measured quaternions are then converted
offline into Euler angles allowing the rotation around the y-axis of the IMUs to be compared
with the angular position of the tube. The experiment aims to discover the magnitude of drift
in the absolute orientation of the IMUs while continuously bouncing, the time it takes for
this drift to emerge, and the time required to recover afterwards.

The experiment consists of three parts with increasing linear acceleration values. For
each acceleration value, the investigation is performed three times. Each IMU is tested at an
acceleration close to, but strictly below, its accelerometer’s saturation limit and the collected
data is checked at the end of the experiment to ensure that the accelerometer never saturated.
Any trial in which the accelerometer reaches its saturation limit is rejected and replaced with
a new one.

3.2 IMU Testing 41

202 202.5 203

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

-1

-0.5

0

0.5

1

Figure 3.10 Motor control signal with respect to the angular position of the tube during the
continuous bouncing of the 4 g experiment. The torque is applied only in the direction of
motion and when the tube is above the rubber bands and below the bounce apex. The zero
line represents the rest position of the rod. Motor control goes from −1 (100% duty cycle
and negative voltage) to +1 (100% duty cycle and positive voltage), allowing a bidirectional
control of the solenoid.

Since the three IMUs have the z-axis vertical, the experiments are classified based on
the maximum acceleration on the z-axis (4 g, 8 g and 16 g). 4 g and 8 g accelerations are
comparable to those experienced by the human ankle during running at the moment when
the foot touches the ground (Table I of [128] and Figure 7 of [129]).

Table 3.4 reports the accuracy reported by the datasheet for each IMU and for which
experiments they have been tested. The different bouncing acceleration values are obtained
by changing the rubber bands’ distance from the axis of rotation of the tube or increasing the
actuated range of motion of the solenoid, or varying the number of rubber bands.

3.2.2 Data Acquisition System

Each IMU has a different communication interface, and therefore it requires its own indepen-
dent data acquisition system; the three processes are synchronized with a dedicated software
interface running on the host PC.

3.2 IMU Testing 42

IMU
Roll / Pitch Yaw

Experiments
deg rad deg rad

BNO055 - - - - 4 g
3DM-GX5-15 0.25 0.0044 - - 4 g, 8 g
VN100 1.00 0.0175 2.0 0.035 4 g, 8 g, 16 g

Table 3.4 IMUs accuracy as stated in the manufacturer’s datasheets. The last column reports
the experiments in which each IMU was tested. Short dashes denote that data are not provided
by the manufacturer.

A different delay in the received data from each IMU is observed due to multiple interfaces
and acquisition systems. As a consequence, all the recorded data are synchronized offline
once the experiment is completed before analyzing the results.

National Instrument sbRIO-9637
The National Instrument sbRIO-9637 board [120] has analog and digital inputs / outputs, a
dual-core CPU and a programmable FPGA. The board is configured based on a Supervisory
Control and Data Acquisition (SCADA) architecture, where the FPGA oversees performing
the SPI communication and controlling the solenoid. The sbRIO-9637 is used to sample the
position encoder and the VN100 using two different SPI channels, both of them at 500 Hz.
The board’s CPU uses these measurements to control the solenoid and sends them to the
host using network streams. Finally, the host runs a software interface to monitor online the
acquired data.

Arduino UNO
The Arduino UNO board [127] is the acquisition system for the Bosch BNO055. The board
communicates with the IMU with an I2C interface; it samples the data at 100 Hz and then it
sends them to the PC through a serial interface.

Host Computer
The data acquisition system for the Lord MicroStrain 3DM-GX5-15 [122] is the software
SensorConnect [123] provided by the vendor. The sensor is sampled at 500 Hz.

A LabVIEW Virtual Instrument (VI) activates the three independent data acquisition
systems simultaneously. When the start button is pressed in the host’s VI, the sbRIO-9637
FPGA starts logging the VN100 and sets to high a digital output connected to the Arduino
Uno to start sampling. The signal returns to low when the user interrupts the logging at the

3.2 IMU Testing 43

host’s VI. The host’s VI also provides the logging timestamp used in the SensorConnect
software to save the captured data of the appropriate time interval.

3.2.3 Results

The main objective of this work is to investigate how the estimation of the absolute orientation
is affected by continuous low-intensity impacts, simulating the shocks that a running/hopping
robot may experience. The experimental apparatus is designed to have the y-axis of the
tested IMUs aligned with the rotation axis of the solenoid, whose angle is directly measured
with the absolute position encoder. The physical imperfections of the system mean that
each IMU’s y-axis is not perfectly aligned with that of the solenoid. To compensate for any
possible misalignment, the conversion of the quaternions into Euler angles is performed in a
coordinate system that is as close as possible to the IMU’s internal coordinate system but has
its y-axis accurately aligned with that of the solenoid. The transformation from internal to
aligned coordinate system is obtained separately for each IMU using its motion data from the
first few bounces. The measured angular position of the encoder, θye , and the corresponding
angle measured by the IMUs, θyI , are referred to as θy when mentioned together. To have
comparable measurements, the average of the measured values with the rod in its rest position
is defined to be the reference orientation for the encoder angle and each IMU, and both the
encoder angle and the IMU orientation estimates are measured relative to this orientation.

One of the outcomes of this experiment is the difference between the angular position
measured by the encoder and the angular rotation about the y-axis estimated by the IMUs.
This value, EPitch, will be referred to as orientation error or simply error. During the
experiments, the rod presents a minor bending while it presses into the rubber bands, see
Figure 3.8. This bending behaviour causes a slightly bigger rotation at the IMUs compared
with encoder measurement (see the responses of the IMUs in Figures 3.12, 3.18 and 3.24).
The error in the two remaining rotation axes (referred to as ERoll about the x-axis and EYaw

about the z-axis) is the difference between the average value of the orientation during the
initial rest period and current orientations since the sensors are not expected to move about
those axes during the experiment. The continuous bouncing of the specimen causes a periodic
component (at around 1-2 Hz) in ERoll, EPitch and EYaw. This component has been removed
from the error graphs by a 6th order zero-phase low pass filter consisting of a Butterworth
filter with a cut-off frequency of 0.2 Hz.

The results of the three experiments are discussed in the following paragraphs. The
solid horizontal lines (where present) in Figures 3.14, 3.15, 3.16, 3.20, 3.21, 3.22,3.26,

3.2 IMU Testing 44

First trial

Second trial

Third trial

Accuracy

Figure 3.11 The picture explains the meanings of the different line styles used in the error
graphs for ERoll, EPitch and EYaw. The legends in those graphs identify each IMU with a
different colour. The accuracy line, when present, shows the datasheet figure for maximum
error so that it can easily be seen whether or not the actual error exceeds the datasheet figure.

3.27, and 3.28 indicate the accuracy of the IMU as stated in the datasheets provided by the
manufacturers. Each experiment is performed three times because having three sets of data
allows one to get an approximate idea of how much of the measured signal is random and
how much is a repeatable effect caused (we assume) by the disturbing effect of the bouncing
motion on each IMU. Table 3.5 reports the maximum and the average peak acceleration
experienced by each IMU to show that none of the IMUs saturated during the experiment. The
average linear velocities of the IMUs at landing during the 4g, 8g, and 16g experiments are
1.9m/s, 3.5m/s and 5.8m/s, respectively. These correspond to drop heights of 0.18m, 0.62m
and 1.71m, respectively. However, the actual drop heights of the IMUs in the bounce tester
are smaller because the IMUs follow a circular arc and are accelerated by the solenoid as
well as gravity. These figures suggest that a legged robot would not experience accelerations
as high as 16g during normal locomotion. However, it should be understood that the rubber
bands give the rod a soft landing and a stiffer landing would produce a larger acceleration for
a given velocity. Such accelerations can arise if the robot is mechanically stiff and/or pounds
the ground with its feet. This type of motion causes acceleration spikes when the (relatively
hard) foot strikes the (hard) ground due to mechanical shock propagating up the leg into the
torso, but this effect is absent in the bounce test experiments.

For each experiment, the behaviour of the Roll, Pitch and Yaw angles is analyzed
separately. Figure 3.11 describes all the lines in the error graphs.

Experiment 1: 4 g Maximum Linear Acceleration

In this experiment, the maximum value of linear acceleration along the z-axis is approximately
4 g and is close to but strictly below the saturation limit of the BNO055 (Table 3.5). All three
IMUs have been tested under the same conditions. Figure 3.12 clearly shows how the three
IMUs signals are all aligned with the encoder at the beginning of the experiment. Figure 3.13
displays the drift that both the VN100 and the BNO055 have accumulated during the motion,
with the latter being higher in magnitude than the former. Once the actuation stops, it takes
around 5-6 seconds for the apparatus to stop. In this time interval, the VN100 recovers from
the drift and converges to the same value measured by the absolute encoder. The BNO055,

3.2 IMU Testing 45

Experiment 4 g
IMU First Trial Second Trial Third Trial

VN100 39.42 38.76 39.02 38.68 38.81 38.13
3DM-GX5-15 39.47 38.79 39.23 38.83 39.10 38.21
BNO055 38.37 37.88 38.24 37.65 37.98 37.27

Experiment 8 g
IMU First Trial Second Trial Third Trial

VN100 76.64 73.83 75.54 74.07 76.56 75.41
3DM-GX5-15 77.71 75.96 76.78 74.87 77.11 75.86
BNO055 - - - - - -

Experiment 16 g
IMU First Trial Second Trial Third Trial

VN100 153.84 153.80 153.86 153.80 153.85 152.95
3DM-GX5-15 - - - - - -
BNO055 - - - - - -

Table 3.5 Every experiment is performed three times. For each experiment trial, the table
reports the highest recorded value of the linear acceleration on the z-axis (left column) and
the average value of the peak acceleration on each bounce (right column) on the z-axis. The
maximum linear acceleration is reached when the specimen reaches the bottom of the bounce
and is about to be pushed back by the rubber bands. The saturation values for the three IMUs
are measured experimentally and are 155.84 for the VN100, 79.66 for the 3DM-GX5-15 and
39.22 for the BNO055. All the acceleration values are expressed in [m/s2].

3.2 IMU Testing 46

61 62 63 64 65 66 67 68

-0.1

-0.05

0

0.05

0.1

0.15
VN100

3DM-GX5-15

BNO055

Absolute encoder

64 64.2 64.4 64.6 64.8 65

-0.1

-0.05

0

0.05

0.1

0.15
VN100

3DM-GX5-15

BNO055

Absolute encoder

Figure 3.12 Synchronized measurements of pitch obtained from the encoder and the IMUs
at the beginning of the 4 g experiment.

250 255 260 265

-0.1

0

0.1

0.2

0.3

VN100

3DM-GX5-15

BNO055

Absolute encoder

Figure 3.13 Synchronized measurements of pitch obtained from the encoder and the IMUs
at the end of the 4 g experiment.

3.2 IMU Testing 47

0 50 100 150 200 250 300
-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

VN100

3DM-GX5-15

BNO055

Figure 3.14 Filtered orientation error on x axis during the 4 g experiment. See Figure 3.11
for line interpretation.

0 50 100 150 200 250 300
-0.05

0

0.05

0.1

0.15

0.2

VN100 3DM-GX5-15 BNO055

Figure 3.15 Filtered orientation error on y axis during the 4 g experiment. See Figure 3.11
for lines interpretation.

3.2 IMU Testing 48

0 50 100 150 200 250 300
-0.05

0

0.05

0.1

0.15

0.2

VN100

3DM-GX5-15

BNO055

Figure 3.16 Filtered orientation error on z axis during 4 g experiment. See Figure 3.11 for
lines interpretation.

330 335 340 345 350
-0.05

0

0.05

0.1

0.15

0.2

VN100

3DM-GX5-15

BNO055

Figure 3.17 Filtered orientation error on z axis after the 4 g experiment. The green vertical
line indicates when the system is temporarily powered off. See Figure 3.11 for lines interpre-
tation.

3.2 IMU Testing 49

instead, is still affected by the accumulated drift for 3 seconds after the actuation ceases.
Once the bouncing motion amplitude is significantly reduced (peak-to-peak smaller than
0.01 rad), also the BNO055 partially recovers from the drift in 3 seconds, leaving a residual
drift. The 3DM-GX5-15 instead proved to be consistent in the estimation of the Pitch angle
throughout the experiment.

Roll (Figure 3.14):
Surprisingly, the BNO055 performs better than the VN100 in the estimation of the Roll
angle. The latter shows some non-negligible drift effects in the estimation of the orientation,
eventually exceeding the datasheet maximum error by more than a factor of 2. It takes the
VN100 around 80 seconds to exceed the datasheet error (i.e. go out of spec) after the motion
starts and 20 seconds to return inside the interval once the bouncing stops. The 3DM-GX5-15
proved to be robust to this kind of motion.

Pitch (Figure 3.15):
The VN100 shows a 0.0025 rad drift in the Pitch angle measurements, but only in one of
the three trials, EPitch slightly exceeds the accuracy range. The BNO055 absolute orientation
estimation drifts significantly, making its values unreliable and impossible to be used in these
circumstances. Also, in this case, the 3DM-GX5-15 gives reliable results, never going out of
spec.

Yaw (Figure 3.16):
The VN100 accurately measures the Yaw angle. As a matter of fact, the EYaw is never outside
the accuracy interval. The 3DM-GX5-15 and the BNO055 show a drift in the Yaw angle
estimation. It can be observed that in both cases, the EYaw increases during the bouncing,
and it never returns to zero, even when the motion ceases. This behaviour, I think, is because
these two IMUs cannot rely on the compensation of the magnetometer; the 3DM-GX5-15
does not have it, while the BNO055 cannot be calibrated due to the experimental set-up.

Power Cycle (Figure 3.17):
All of the three IMUs have been powered off and on (power cycle) after every trial to see the
effects on the estimation of the Yaw angle. The VN100 is still within the accuracy range as
expected. The 3DM-GX5-15 starts evaluating the Yaw angle again with an offset different
from the initial one due to the lack of magnetometer data. The EYaw for this IMU never

3.2 IMU Testing 50

60 62 64 66 68 70 72 74
-0.2

-0.1

0

0.1

0.2

0.3

0.4 VN100

3DM-GX5-15

Absolute encoder

70.8 71 71.2 71.4 71.6

-0.1

0

0.1

0.2

0.3

0.4

VN100

3DM-GX5-15

Absolute encoder

Figure 3.18 Synchronized measurements of pitch obtained from the encoder and the IMUs
at the beginning of the 8 g experiment and at steady state.

returns to the initial value. The BNO055, instead, restarts from the initial value, showing an
almost null error.

Experiment 2: 8 g Maximum Linear Acceleration

This experiment intends to test the VN100 together with the 3DM-GX5-15 with a linear
acceleration as close as possible to 8 g, which is the acceleration saturation limit of the
3DM-GX5-15 (Table 3.5). Also, in this case, the two IMUs have the y-axis aligned with the
solenoid, and the signals are synchronized, see Figure 3.18. Like in the previous experiment,
the 3DM-GX5-15 proved to be a better estimator of θy than the VN100, which drifts
significantly during the motion, Figure 3.19. Once the motion stops, it takes more than 25s
for the VN100 to eliminate the drift disturbance and give the correct angle measurement.

Roll (Figure 3.20) and Pitch (Figure 3.21):
The VN100 shows evident drift in estimating the Roll and the Pitch angles. It takes approxi-
mately 40 seconds for the ERoll to exceed the accuracy limit and 55 seconds for the EPitch.
These errors return inside the accuracy interval around 25 seconds after the motion ceases.
The VN100 appears to have a constant recovery rate, with a recovery time depending on the
error size. In both cases, the 3DM-GX5-15 shows a negligible error.

Yaw (Figure 3.22):
Interesting results are shown in the Yaw angle estimation, where the VN100 shows a signifi-
cant and persistent drift. EYaw crosses the accuracy threshold after 40 seconds and persists

3.2 IMU Testing 51

245 250 255 260 265 270 275
-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4 VN100

3DM-GX5-15

Absolute encoder

Figure 3.19 Synchronized measurements of pitch obtained from the encoder and the IMUs
at the end of the 8 g experiment.

0 50 100 150 200 250 300
-0.02

0

0.02

0.04

0.06

0.08

VN100

3DM-GX5-15

Figure 3.20 Filtered orientation error on x axis during the 8 g experiment. See Figure 3.11
for lines interpretation.

3.2 IMU Testing 52

0 50 100 150 200 250 300
-0.02

0

0.02

0.04

0.06

0.08

VN100

3DM-GX5-15

Figure 3.21 Filtered orientation error on y axis during the 8 g experiment. See Figure 3.11
for lines interpretation.

0 50 100 150 200 250 300
-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

VN100

3DM-GX5-15

Figure 3.22 Filtered orientation error on z axis during the 8 g experiment. See Figure 3.11
for lines interpretation.

3.2 IMU Testing 53

320 330 340 350 360
-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

VN100

3DM-GX5-15

Figure 3.23 Filtered orientation error on z axis after the 8 g experiment. The green vertical
line indicates when the system is temporarily powered off. See Figure 3.11 for lines interpre-
tation.

after the bouncing stops, with a magnitude of approximately 20 degrees. On the other hand,
the 3DM-GX5-15 shows a small drift in magnitude but with sign not constant through the
trials (it is positive in one trial and negative in the other two).

Power Cycle (Figure 3.23):
The Yaw error of the VN100 does not return inside the accuracy interval after the bouncing
stops. It requires a power cycle to make EYaw return between the boundaries of such interval.
The power cycle forces the 3DM-GX5-15 to restart estimating the Yaw angle from a value
which is different both from the initial one and the one before the power cycle.

Experiment 3: 16 g Maximum Linear Acceleration

The last experiment analyzes the behaviour of the VN100 near its acceleration saturation
limit at 16 g (Table 3.5). Figure 3.24 shows that the IMU’s measurement is aligned with the
encoder’s one at the beginning of the motion, while Figure 3.25 clearly shows that the two
signals are not aligned anymore when the motion stops.

Roll (Figure 3.26) and Pitch (Figure 3.27):
The drift on the Roll and Pitch angles is significant and not negligible, but it does not affect

3.2 IMU Testing 54

58 60 62 64 66 68 70
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

VN100

Absolute encoder

65.5 66 66.5 67
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

VN100

Absolute encoder

Figure 3.24 Synchronized measurements of pitch obtained from the encoder and the IMUs
at the beginning of the 16 g experiment and at steady state.

the absolute estimation once the bouncing finishes; both ERoll and EPitch return inside the
accuracy interval after 25 seconds. ERoll crosses the accuracy threshold after 20 seconds from
the start of the motion, while EPitch requires 70 to 130 seconds to reach the limit, depending
on the trial.

Yaw (Figure 3.28):
On the other hand, the drift on the estimation of the Yaw angle is significant; it exceeds the
threshold after 20-40 seconds (depending on the trial) and persists once the IMU returns to
the initial rest position. EYaw varies from 5 to 10 degrees, depending on the trial.

Power Cycle (Figure 3.29):
Like in the 8 g experiment, a power cycle proved to be necessary to bring the EYaw back
inside the accuracy interval.

3.2.4 Discussion

The IMU that displayed the worst performance in the 4 g experiment is the BNO055, which
was the cheapest out of the three IMUs. The drift in the estimation of the Yaw angle was more
than 4 degrees and the BNO055 was the only IMU that could not recover the initial orientation
after the bouncing motion had stopped. A simple power cycle proved to be partially effective:
it brings back EYaw to its original value but it leaves the IMU not calibrated.

3.2 IMU Testing 55

245 250 255 260 265
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
VN100

Absolute encoder

Figure 3.25 Synchronized measurements of pitch obtained from the encoder and the IMU at
the end of the 16 g experiment.

0 50 100 150 200 250 300

0

0.05

0.1

0.15

VN100

Figure 3.26 Filtered orientation error on x axis during 16 g experiment. See Figure 3.11 for
lines interpretation.

3.2 IMU Testing 56

0 50 100 150 200 250 300
-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

VN100

Figure 3.27 Filtered orientation error on y axis during 16 g experiment. See Figure 3.11 for
lines interpretation.

0 50 100 150 200 250 300
-0.05

0

0.05

0.1

0.15

0.2

0.25

VN100

Figure 3.28 Filtered orientation error on z axis during 16 g experiment. See Figure 3.11 for
lines interpretation.

3.2 IMU Testing 57

340 350 360 370 380
-0.05

0

0.05

0.1

0.15

VN100

Figure 3.29 Filtered orientation error on z axis after 16 g experiment. The green vertical line
indicates when the system is temporarily powered off. See Figure 3.11 for lines interpretation.

The 3DM-GX5-15 achieved the best performance in all the conditions where it was tested.
It is the only evaluated IMU that does not have a drift in estimating the Roll and Pitch angles
both in the 4 g and 8 g experiments. Instead, the drift on the Yaw angle is due to the absence
of the magnetometer and cannot be compensated. In this case, a power cycle proved to be
ineffective.

The VN100 is the only IMU tested in all three experiments. It presents a drift in estimating
the Roll angle in every experiment, and in the 4 g experiment, it behaves worse than the
BNO055. In all the experiments, both ERoll and EPitch return inside the accuracy range once
the motion stops. During the 4 g experiment the IMU does not show any drift in the Yaw
angle estimation. Such behaviour is not present in the 8 g and 16 g experiments, where a
power cycle turned out to be necessary to bring back the EYaw into the accuracy range.

3.2.5 Conclusions

This work is intended to give the reader a better understanding of the behaviour of MEMS
IMUs in an environment for which they have not been specifically designed. The experiments
reported in this section investigated the orientation estimation performance of a selection
of IMUs, subject to continuous low-intensity impacts, which aim to reproduce impacts

3.3 General Comments and Limitations 58

experienced during hopping or running. According to the results, all three IMUs suffered a
certain amount of drift during the experiments.

The continuous bouncing of the specimen resembles the motion of a bipedal or quadruped
robot running. Therefore using these MEMS IMUs as a balancing reference point may lead
to unexpected results, making it difficult to control the robot. The evident drift in the absolute
orientation estimation cannot be left out in the design process of the control system, which
has to be robust enough either to withstand or to compensate for it. Alternatively, having
this knowledge, the simplest thing to do would be for the robot to rest until the drift gets
eliminated, similar to humans that stop when they are disoriented.

In this work, a drift in the IMU’s data means an increasing error in the estimation of the
vertical, and practical consequences that could be experienced differ from the type of robot
considered. In the case of a balancing machine, such as in Chapters 4, 5 and 6, the robot
would start oscillating while trying to find a balanced configuration, and eventually, it will
become impossible to balance. On the other hand, for a hopping robot like in Chapter 7, a
wrong estimation of the vertical means that the robot would jump with an angle that is not
the desired one, causing an undesired behaviour and possibly making it impossible to recover
from such a hop.

3.3 General Comments and Limitations

In the case of such an athletic and dynamic robot like Skippy, whose performance is de-
liberately trying to reach the limit of the hardware capabilities, it is essential to know the
behaviour of the sensors in such conditions. Thanks to the tests performed in this chapter,
the control system can be aware of the sensors’ limits and how to deal with them to achieve
the desired performance. Furthermore, a more robust robot design can be achieved, ensuring
the correct sensors’ behaviour in all the desired working conditions. As a consequence, a
simple methodology for testing encoders and IMUs is presented.

Both experiments can be improved to remove (or at least mitigate) some of the design
flaws. The results obtained in Section 3.1 can be improved by designing a stiffer catapult
arm, reducing the motor-shaft misalignment, building a more solid platform for the foam and
putting the encoder at the centre of percussion of the catapult. The new testing apparatuses
will reduce the undesired vibrations and the mechanical shock experienced by the encoder,
allowing for more precise measurements. The work of Section 3.2 can be further developed
with more and newer IMUs, which allow for a full calibration before the experiment;
increasing the number of trials will allow a statistical analysis of the performance.

Chapter 4

Reaction Wheel Pendulum

This chapter presents the balance controller for an inverted reaction wheel pendulum robot.
The chapter is organized as follows. First, a brief introduction of the general balance control
theory, then a simplification for the case of a reaction wheel pendulum, then the robot used
for the experiments is described, followed by the experimental results.

4.1 General Balance Control Theory

This section presents a brief outline, and only for the case of balancing in a plane, of the
balancing theory proposed by Featherstone and described in detail in [18; 130]. The theory
has then also been extended to control the absolute motion of a 2D triple pendulum in [131].
The basic idea is to close a control loop around the plant shown in Figure 4.1, which describes
the exact dynamics of balancing for any planar robot, having any number of bodies and joints.
The robot is balancing on a stationary point that can be modelled as a passive revolute joint,
and a single actuated joint qa responsible for balancing. Such a robot can be modelled as the
inverted double pendulum of Figure 4.2. Since the robot is balancing on a passive revolute
joint, the general equation of motion

Hq̈+C = τ (4.1)

can be written as [
H11 H12

H21 H22

][
q̈1

q̈2

]
+

[
C1

C2

]
=

[
0
τ2

]
(4.2)

4.1 General Balance Control Theory 60

Figure 4.1 Plant model of the balance dynamics for any planar robot [5].

where Hi j are the elements of the joint-space inertia matrix and Ci are the elements of the bias
vector containing Coriolis, centrifugal and gravitational terms, q̈i are the joint accelerations,
and τ2 is the torque at the only actuated joint.

Figure 4.2 Dynamic model of the planar double pendulum [5].

The first step consists in defining all the quantities in Figure 4.1. Let us define L to be
the angular momentum of the robot in Figure 4.2 about the support point. From classical
mechanics, we have that the derivative of the angular momentum about the support point and
its first two time derivatives are

L̇ =−mgcx (4.3)

L̈ =−mgċx (4.4)
...
L =−mgc̈x (4.5)

where m is the mass of the robot and g is the magnitude of the gravitational acceleration; cx,
ċx and c̈x are the position, velocity, and acceleration in the x direction of the centre of mass.
Following a special property of joint-space momentum that is proved in Appendix B of [18],

4.1 General Balance Control Theory 61

the angular momentum of the robot about joint 1 is

L = p1 = H11q̇1 +H12q̇2 (4.6)

where pi is the generalized momentum variable corresponding to velocity variable q̇i. The
vector p equals the product Hq̇, so

pi =
i

∑
j=1

Hi jq̇ j . (4.7)

Both L and L̈ depend linearly on the robot’s velocity, implying that L= L̈= 0 is equivalent
to q̇1 = q̇2 = 0 since they are linearly independent. L̇ is a constant multiple of cx. As shown
in [18] and [132], any controller that makes L = L̇ = L̈ = 0 will make the robot balance but
will not drive the actuated joint in the desired position. Let us add an extra fictitious prismatic
joint acting in the x direction between the joint 1 of the robot and the ground. The extra joint
is called joint 0 to preserve the numbering of the existing joints. The extra joint does not
move, and its purpose is to increase the number of coefficients in the equation of motion
so that standard dynamics functions can be used to calculate the quantities needed by the
balance controller. The equation of motion now readsH00 H01 H02

H10 H11 H12

H20 H21 H22


 0

q̈1

q̈2

+

C0

C1

C2

=

τ0

0
τ2

 . (4.8)

The values of position and velocity for joint 0 are set to zero, while τ0 takes the necessary
value to ensure that q̈0 = 0 always, which implies that τ0 = mc̈x is the x component of the
ground reaction force acting on the robot. The special property of the joint-space momentum
used before to define p1 = L can be used in this case to define p0 as the linear momentum of
the whole robot in the x direction, so

p0 = mċx = H01q̇1 +H02q̇2 . (4.9)

Combining Equations 4.4 and 4.9 we get

L̈ =−g(H01q̇1 +H02q̇2) (4.10)

4.1 General Balance Control Theory 62

and combining Equations 4.5 and 4.8 we get

−
...
L /g = H01q̈1 +H02q̈2 +C0 . (4.11)

We now have an equation relating
...
L to the two independent joint accelerations and a pair of

linear equations relating L and L̈ to the two independent joint velocities[
L

L̈

]
=

[
H11 H12

−gH01 −gH02

][
q̇1

q̇2

]
. (4.12)

Solving this equation for q̇2 gives

q̇2 = Y1L+Y2L̈ (4.13)

where
Y1 =

H01

D
, Y2 =

H11

gD
(4.14)

and
D = H01H12 −H11H02 . (4.15)

We now have defined all the quantities in Figure 4.1, which are summarised here: L is the
angular momentum of the whole robot about the support point; L̇, L̈ and

...
L are its first three

time derivatives; qa and q̇a are the position and velocity variables of the actuated joint (which
is joint 2 in Figure 4.2); and Y1 and Y2 are the two configuration-dependent gains that describe
the robot’s balancing dynamics.

...
L is the input, qa is the output, and L, L̇, L̈ and qa are the

state variables.
The next step consists in defining

...
L . To maintain balance, the balance controller’s task

is to determine an appropriate value for
...
L that will enable qa to track a specified command

signal qc. A suitable control law to accomplish this is

...
L = kddL̈+ kdL̇+ kLL+ kq(qa −u) , (4.16)

where u is the input to the controller (see Equation (4.19)). The feedback gains are obtained
via pole placement as:

kdd =−a3 kd =−a2 +a0Y2/Y1

kL =−a1 kq =−a0/Y1 ,
(4.17)

4.1 General Balance Control Theory 63

where
a0 = λ1λ2λ3λ4

a1 =−λ1λ2λ3 −λ1λ2λ4 −λ1λ3λ4 −λ2λ3λ4

a2 = λ1λ2 +λ1λ3 +λ1λ4 +λ2λ3 +λ2λ4 +λ3λ4

a3 =−λ1 −λ2 −λ3 −λ4 ,

(4.18)

and λ1, . . . ,λ4 are the chosen values of the poles. Let us define the time constant for toppling,
denoted as Tc, as the rate at which the robot starts to fall when there is no movement
in the actuated joint. It is a physical property of the robot and varies depending on the
robot’s structure and configuration. A good initial strategy to select the first three poles is
λ1 = λ2 =−1/T ∗

c , where T ∗
c is the robot’s natural time constant of toppling in a balanced

configuration (e.g. q1 = q2 = 0 for the robot in Figure 4.2), and λ3 = Tc, where Tc is the
robot’s natural time constant of toppling in the current configuration. The fourth pole is the
one that determines the closed-loop bandwidth and has to be selected carefully not to make
the system unstable.

When using pole placement, it is assumed that the two gains, Y1 and Y2, in Figure 4.1 are
constants, which implies that the plant is linear. However, in reality, these gains vary with
the robot’s configuration, which means that the plant is not perfectly linear. Despite this, the
variation in the gains is small enough that it does not greatly impact the performance of the
balance controller.

The input to the controller, u, is computed from the filtered command signal, qf, according
to

u = qf +α1q̇f +α2q̈f, (4.19)

where qf = AF(qc), q̇f = AF(q̇c) and q̈f = AF(q̈c), and qc, q̇c and q̈c are the desired position,
velocity and acceleration of the actuated joint. α1 and α2 are feedforward gains that introduce
two zeros into the transfer function at −1/T ∗

c which cancel the poles λ2 and λ3. AF is an
acausal filter consisting of a first-order low-pass filter with a time constant Tf that runs
backwards in time from a point sufficiently far in the future back to the present. Its reverse-
time transfer function is 1/(1+Tfs), which corresponds to a forward-time transfer function
of 1/(1−Tfs). The practical effect of this filter is to minimize the robot’s tracking error by
causing it to lean ahead of time in anticipation of balance disturbances caused by the motion
command signal qc. More information about this filter can be found in [18 § 4.3]. In the
experiments presented in this thesis, the complete signal u(t) is calculated in advance, setting
Tf = T ∗

c . However, in a practical implementation, it would be enough to give the controller
3T ∗

c advance notice of the command signal [18].

4.2 RWP Special Case 64

Given the control law in (4.16), with gains as in (4.17) and (4.18), and the input signal as
in (4.19), it can be shown that the complete transfer function from qc to qa would be

qa(s) =
a0(1+Tcs)(1+α1s+α2s2)

s4 +a3s3 +a2s2 +a1s+a0
qc(s), (4.20)

which simplifies to

qa(s) =
1

1+ s/(−λ4)
qc(s) (4.21)

after the cancellation of poles and zeros, if it were really true that Y1, Y2 and Tc were constants
[18]. This expression is the theoretical transfer function of the balance controller, and it will
be compared to the experimental results obtained in this thesis.

The controller’s output must be either an acceleration or a torque for the actuated joint;
that is, either q̈2 or τ2. Combining Equations 4.8, and 4.11 we obtain 0 H01 H02

0 H11 H12

−1 H21 H22


τ2

q̈1

q̈2

=

−
...
L /g−C0

−C1

−C2

 (4.22)

which can be solved for both q̈2 and τ2. The main point to understand is that the elements
Hi j can be computed using any typical computer program for calculating joint-space inertia
matrices, while the elements Ci can be computed using standard code for joint-space bias
vectors, which involves the sum of all velocity and gravitational terms. The other variables
required by the balance controller are the robot’s total mass, m, the gravitational acceleration
magnitude, g, which are constants, and the x coordinates of the robot’s CoM position and
velocity, cx and ċx. By taking advantage of traditional dynamics software in this manner, it is
possible to minimize the amount of new code required to implement the balance controller.

4.2 RWP Special Case

In the case of the RWP, thanks to its mechanical symmetry (the centre of mass of the reaction
wheel coincides with its rotation axis), the balance controller can be simplified. This analysis
has already been presented in [4] and is briefly summarized here since it is the first controller
that will be experimentally tested in this thesis.

The motions of the robot shown in Figure 4.3 can be described by the two joint angles
q1 and q2, and due to the symmetry of the reaction wheel, the robot balances when q1 = 0,

4.2 RWP Special Case 65

Figure 4.3 Reaction wheel pendulum model [4].

regardless of the value of the only actuated joint q2. The equation of motion of the RWP is

H11q̈1 +H12q̈2 = mcgsin(q1)

H21q̈1 +H22q̈2 = τ2
(4.23)

where q̈i are the joint acceleration variables, Hi j are the elements of the joint-space inertia
matrix, τ2 is the torque of the actuated joint 2, m is the total mass of the robot, c is the
distance of the CoM from the origin, and g is the magnitude of the gravitational acceleration.
For this RWP, the joint-space inertia matrix terms can be rewritten as

H11 = mcgT 2
c and H12 = H21 = H22 =−GωH11 (4.24)

where Tc is the natural time constant of the toppling of the robot when q1 = 0 considering
the robot as a single rigid body, and Gω is the angular velocity gain of the robot [133].
Equations 2 and 3 of [4] relate Tc and Gω to the dynamic parameters of the robot and not to
its configuration.

T 2
c =

H11

mcg
=

mc2 + I1 + I2

mcg
(4.25)

Gω =
∆q̇1

∆q̇2
=− I2

mc2 + I1 + I2
(4.26)

where I1 and I2 are the rotational inertias of the two bodies about their CoM respectively.
The equations are exact only when cy = c meaning q1 = 0. The state variables required
by the balance controller and presented in Section 4.1 can be simplified by replacing the

4.3 Balance Offset Observer 66

configuration-dependent joint-space inertia matrix terms with the constant values of Tc and
Gω (as shown in Equations 9 to 12 of [4]), and now they read

M = T 2
c (q̇1 −Gω q̇2), (4.27)

Ṁ = q1, M̈ = q̇1,
...
M = q̈1, (4.28)

Y1 =
−1

T 2
c Gω

and Y2 =
1

Gω

(4.29)

where M = L/(mcg) and after the assumption of small variations of q1 and a negligible value
of q̇2

1. The control law presented in 4.16 can be adapted to the specific case of the RWP and
now reads

...
M = kddM̈+ kdṀ+ kMM+ kq(q2 −u) (4.30)

where the gains are those described in Equation 4.17, kM = kL, and the input signal u is the
same as the one described in Equation 4.19. The output of the balance controller can be
converted into a torque or acceleration command for joint 2

q̈2 = (mcgsin(q1)−H11
...
M)/H12

τ2 = H21
...
M +H22q̈2

(4.31)

where the terms Hi j are constant and defined in Equation 4.24. Thanks to the specific
structure of the RWP, the simplified version of the balance controller allows balancing the
robot without using any dynamics software to calculate the matrix H and the vector C. In this
manner, the amount of code required to implement the balance controller is at its minimum.

4.3 Balance Offset Observer

The content of this section has already been presented in [4 § 4], and it is reported here for
completeness since all the experiments presented in this thesis rely on this technique.

The reaction wheel pendulum described before balances when q1 = 0, and it has been
proved that the balance controller is quite sensitive to errors in the estimate of the balanced
configuration [50; 91]. This error is specifically crucial for Skippy, which uses as a reference
the angle measured by the IMU. This value can be affected by drift or offset due to the
physical assembly. Consequently, a method to compensate for such errors has to be used.

Let us define
q1 = q̂1 −qo (4.32)

4.4 Experimental Setup 67

(a) (b)

Figure 4.4 (a): CAD model; (b): Skippy’s Head as RWP

where q̂1 is the measured value of q1, and qo is the unknown balance offset error, which is
assumed to vary so slowly that q̇o can be neglected with respect to ˙̂q1 and q̇1. There are now
two ways to calculate Ṁ

Ṁ = q̂1 −qo (4.33)

and
Ṁ =

dM
dt

=
d
dt

T 2
c (q̇1 −Gω q̇2) (4.34)

where d/dt is the numerical differentiation. Combining these two equations, we can estimate
qo as

qo = LPF(q̂1 −
dM
dt

) (4.35)

where ‘LPF’ is a low pass filter with a cutoff frequency of 1rad/s. The expression q̂1 −qo is
used in place of q1 in all the equations of Sections 4.1 and 4.2.

4.4 Experimental Setup

Figure 4.4b presents the robot used for this experiment. It consists of Skippy’s ‘Head’,
containing the control unit (referred as the ‘Brain’), sensors and motor, mounted on a pair
of stilts, and the reaction wheel, which we usually refer to as the symmetric crossbar, in
contrast to the asymmetric crossbar, which will be presented in the upcoming chapters. The

4.4 Experimental Setup 68

Figure 4.5 Capstan-drive mechanism and Brain [5].

Head, together with the stilts, forms body 1, and the crossbar is body 2 in the model of the
reaction wheel pendulum shown in Figure 4.3. The dynamic parameters are initially taken
both from the CAD model of the robot and from the manual measurements (see Appendix A),
and then manually tuned to compensate for minor inaccuracies in the CAD model and the
measurements. The stilts touch the ground at two points, making a two-point contact foot
aligned with the rotation axis of the crossbar, making the robot behave as a planar RWP.

4.4.1 Actuation System

The actuation system depicted in Figure 4.5 comprises a Maxon DC motor DCX22L-GB-KL-
18V [110], which actuates a custom-made spring-loaded friction capstan-drive mechanism.
The motor shaft is attached to an aluminium cylindrical capstan, which is pressed against
the inner part of an aluminium cylindrical drive wheel by a titanium alloy leaf spring. This
generates a pressing force of 120N at the capstan, which allows the transmission of up to
3 Nm of torque to the drive wheel without slipping. The balance controller and the motor
servo ensure that this torque limit is never exceeded.

The mechanism is designed for Skippy, which is intended to hop up to 3m and survive
falls from that height without damaging the drive system. In fact, the drive wheel slips on
the capstan when high accelerations due to crash landings are applied to the crossbar, not
damaging the rest of the drive system. The rolling motion between the capstan and the wheel

4.4 Experimental Setup 69

provides minimal backlash and a reduced stiction coefficient compared to traditional geared
drives. However, the system is susceptible to wear and may be damaged by dust and debris.
The system has a gear ratio G = 12.5. The motor is controlled by a Pololu G2 24v13 motor
driver [118], which enables the Brain to regulate the motor via a Pulse Width Modulated
(PWM) signal.

4.4.2 Reaction Wheel

The balancing machine, as will do Skippy, uses a three-blade reaction wheel to balance itself.
Each blade is made of fibreglass of a specific custom shape, and it can withstand shocks due
to crash landings without breaking. Glued brass weights are at the edge of each blade to
increase the wheel’s inertia. The extremities of the wheel are protected with shock-absorbing
foam covered with an anti-tear pink fabric.

4.4.3 Sensors

To maintain balance, the robot needs to know the angle between body 1 and the vertical
(q1) and the angle between the crossbar and body 1 (q2). Additionally, the robot needs to
determine the angular position of the motor (qm) to calculate its speed, which serves as input
to the motor servo. All the sensors have been thoroughly tested in Chapter 3.

IMU

The Inertia Measurement Unit mounted on the robot is the VN-100 by Vectornav [121]. It
has the y-axis aligned with the rotation axis of the crossbar. In the configuration used for this
experiment, it is used to evaluate the angle q1 and its velocity q̇1. It is connected to the Brain
with a dedicated SPI channel and sampled at 1kHz. The IMU’s latency is 4 - 5.6ms.

Absolute Position Encoder

Referring to Figure 4.3, the AksIM-2 absolute magnetic rotary encoder is utilized to measure
the angle q2 of the crossbar with respect to the lower link of the robot. The specific model
used is the MB049DCC19BDNT00, which has a magnetic ring diameter of 49mm and
provides a resolution of 19 bits for angular position. The Brain samples the encoder at a rate
of 5kHz, utilizing the BiSS-C interface operating at a frequency of 3.8MHz.

4.4 Experimental Setup 70

Parameter Measured Value CAD Value Tuned Value
Velocity Gain Gω -0.068 -0.072 -0.071
Toppling Constant Tc [s] 0.182 0.176 0.182
First Moment of Mass mc [kg m] 0.53 0.54 0.55

Table 4.1 Dynamic parameters of the reaction wheel pendulum.

Incremental Encoder

To determine the angular position of the motor, a Maxon ENX 16 EASY incremental
position encoder is used. The encoder generates 4096 steps per turn through its incremental
interface. The Brain samples the encoder at a rate of 5kHz using the eQEP module, and the
register is read synchronously with the absolute encoder. The quadrature encoder’s position
values, denoted by qm, are then used to approximate the motor’s angular velocity, which is
subsequently used by the motor servo. A numerical differentiation method and a second-order
discrete-time Butterworth filter with a cutoff frequency of 400rad/s are employed to estimate
the motor’s angular velocity, denoted as q̇m.

4.4.4 Control Unit: The Brain

The balancing machine, like Skippy, is completely untethered. All sensing and computations
are conducted in real-time onboard by the Brain’s microcontroller, the TMS320F28377S
[134], to which all the sensors are directly connected. The control system is divided into two
layers, with the balance controller operating at 1kHz and the motor servo tracking the output
of the first layer at 5kHz. The acceleration of the crossbar q̈2 is the output of the balance
controller, which is then numerically integrated to obtain the crossbar velocity (q̇2), which
is then multiplied by the gear ratio G to transform it into motor velocity (q̇m). The motor
velocity is used as input to the motor velocity servo, which is a simple proportional controller
with a gain of Kp = 0.008V/(rad/s). Additionally, a feed-forward signal is included to
account for the back electromotive force (τem f), which is added to the motor servo output as
an additional term τem f = τc q̇m, where τc is the torque constant of the motor and q̇m is the
motor velocity. The low-level controller output consists of the proportional PWM signal and
the motor’s direction of rotation.

4.4 Experimental Setup 71

10 11 12 13 14 15 16 17 18 19 20

-

-3/4

- /2

- /4

0

/4

/2

3/4

5/4

3/2

7/4

(a)

(b)

Figure 4.6 (a) Skippy and (b) Tippy [4] tracking performance. qc is the command signal, q f
is the filtered command signal, q2 is the angle of the crossbar, qt is the theoretical response,
and 10 q1 is ten times the angle of the robot with respect to the vertical.

4.5 Experimental Results 72

4.5 Experimental Results

The experiment evaluates the tracking performance of the RWP implementation of the
balancing controller. The robot used for the experiment is the one presented in Section 4.4,
and the dynamic parameters of the simplified RWP balance controller are reported in Table 4.1.
Such parameters are initially both measured experimentally (see Appendix A) and derived
from the CAD model (Equations 4.25 and 4.26). The obtained values agree and are fine-
tuned manually during the experimental procedure. The robot tracks the desired command
signal, which is the angular position of the crossbar q2 = qa. The command signal qc

has been transformed using the leaning in anticipation technique described in Section 4.1.
Although Tc varies with the robot’s configuration, the filter time constant Tf is assumed to be
constant with the tuned value of Tc = 0.182 s. In the following experiment, the poles of the
balance controller are chosen as follows: λ1 = λ2 = λ3 =−1/Tc and λ4 =−20, leading to a
theoretical closed-loop transfer function

qa(s) =
1

1+ s/(−λ4)
qc(s) =

1
1+0.05s

qc(s) (4.36)

which is used as a reference for the actual response in the experimental results.

4.5.1 Tracking Performance

Figure 4.6 compares the tracking performance obtained with this robot with the one obtained
with Tippy in [4]. Thanks to a stiffer mechanical design, it was possible to have the pole
λ4 = −20, which is two times higher than in [4] where λ4 = −10. The higher pole and a
better mechanical design enable faster and more precise tracking, with the obtained results
clearly outperforming those obtained in [4]. Skippy’s Head is not fixed to the ground; instead,
the stilts simply touch the ground. Consequently, the reaction wheel’s energetic and fast
motions cause the stilts to slip. The controller can compensate for such an unexpected
disturbance at the price of a small overshoot. This effect is visible at 11.5 s (see Figure 4.6a),
where a high deceleration to stop the crossbar causes the stilts to slip, with a consequent slight
overshoot in the trajectory tracking. Further discussion on this topic is present in Chapter 5,
where the foot slips significantly, causing a more significant compensating overshoot.

4.6 Conclusion 73

4.6 Conclusion

This chapter presented the results obtained with Skippy’s Head configured as a reaction
wheel pendulum. This proved the efficiency of part of the sensorimotor system that Skippy
will use to perform its duties. It also confirmed that the controller described in [18] could be
used for high-performance control using an IMU to estimate the angle with respect to the
vertical, despite the delay in the sensor’s measurements. This is a new result compared to
Tippy [4], where the vertical was measured with an encoder. Furthermore, this experiment
proved the ability of the controller to achieve high balancing performance with a robot not
anchored to the ground (opposite of Tippy, which pivots on a shaft fixed to the ground), in
contrast to the results obtained in balancing HyQ [92] where it was impossible to achieve
precise and fast tracking due to its hardware design not specifically intended for these tasks.

Chapter 5

General Inverted Double Pendulum

This chapter presents the first implementation of the general balance controller presented in
Section 4.1 on a inverted double pendulum. The results shown in the upcoming sections have
already been published in [5] (© 2023 IEEE, partially reproduced here with permission) and
are reported here because they are significant for the development of Skippy and are part of
the novelty of this thesis. The figures and tables in this chapter are taken from [5].

5.1 Experimental Setup

The experimental setup for this experiment is the same as the one described in Section 4.4
with the asymmetric crossbar replacing the reaction wheel, and is shown in Figure 5.1. The
asymmetric crossbar is a 3D-printed beam connected at one end to the drive mechanism and
with extra weight at the other end to increase its inertia. The robot in this configuration can
be described as a inverted double pendulum balancing in 2D, as shown in Figure 4.2, with
the dynamic and kinematic parameters described in Table 5.1.

5.2 Control System

The simplifying assumptions made for the RWP in Section 4.2 are not valid anymore; hence
the general balance controller is applied. The control system at each iteration evaluates
the matrix H and the vector C described in Section 4.1. The balance controller uses such
information to calculate the desired output for the actuated joint qa = q2. In the experiments
reported here, the poles are chosen as follows: λ1 =−1/Tc, λ2 = λ3 =−1/T ∗

c , and λ4 =−20,
where Tc is the robot’s natural time constant of toppling in its current configuration, and T ∗

c

5.2 Control System 75

Dynamic parameter CAD value Tuned value
m1 [kg] 1.41 1.41

I1 [kgm2] 0.0073 0.007
c1x [m] −0.004 -0.009
c1y [m] 0.255 0.254
l1 [m] 0.28 0.28

m2 [kg] 0.44 0.44
I2 [kgm2] 0.0083 0.008

c2 [m] 0.110 0.109
Table 5.1 Dynamic parameters of the robot required by the model of Figure 4.2, derived
from the CAD model (central column) and manually adjusted via experimentation on the
real robot (right column).

Figure 5.1 Photos of the balancing machine. In the left picture, the robot is not operating
and rests by touching the ground with the upper link and the two-point contact foot. In the
central picture, it is balancing with the upper link upright. In the right picture, it is balancing
with the upper link at an angle of −π/2 with respect to the lower link.

5.3 Experimental Results 76

is a constant value equal to Tc when the robot is balancing with the upper link upright (i.e.,
q1 = q2 = 0). The fourth pole, which is the one that determines the closed-loop bandwidth,
is four times higher than that in [59] and 2 times higher than [4], allowing faster and more
responsive behaviour. The input command signal qc is filtered as described in Equation 4.19,
and the acausal filter time constant used in this experiment is Tf = T ∗

c . The complete transfer
function is

qa(s) =
a0(1+Tcs)(1+α1s+α2s2)

s4 +a3s3 +a2s2 +a1s+a0
qc(s), (5.1)

which simplifies to the theoretical response

qa(s) =
1

1+ s/(−λ4)
qc(s) =

1
1+0.05s

qc(s) (5.2)

5.3 Experimental Results

This is the first experimental evaluation of the tracking performance of the general imple-
mentation of the balancing controller. The results are shown alongside the theoretical results
in Figures 5.2 and 5.3. The robot follows a desired command signal that represents the
angular position of the asymmetric crossbar, which has been transformed using the leaning in
anticipation technique discussed in Section 4.1. Figure 5.4 shows the tracking error through
the experiment after the robot self-balanced itself. Although Tc varies with the configuration
of the robot, in the range 0.170s to 0.182s, the filter time constant Tf is assumed to be
constant with the value of T ∗

c = 0.182s, which is the value of Tc when the robot is in an
upright configuration.

The experiment begins with the robot in a rest position, with no actuation and the crossbar
touching the ground, as depicted in Figure 5.1. The first step of the robot is to autonomously
balance itself by gently pushing the crossbar towards the foot until the machine begins to
tip towards the left. At this point, the balancing controller is activated, and the crossbar is
raised to an upright position, reaching q2 = 0. As the crossbar nears the vertical position,
the balance offset observer, explained in Section 4.3, is turned on to estimate, track, and
compensate for the difference between the IMU’s estimation of the vertical and the actual
balanced vertical position of the robot. The robot then commences tracking a trajectory at
time t = 5s in Figure 5.2. The trajectory starts with a slow sine wave that covers nearly the
entire range of motion of the upper link (otherwise, it will collide with the ground). Next,
there is a fast sine wave that is centred on the upright configuration. This is followed by

5.3 Experimental Results 77

0 5 10 15 20 25

-3 /4

- /2

- /4

0

/4

/2

3 /4
q

c
q

f
q

t
q

2
2 q

1

Figure 5.2 Tracking of motion command qc. q f is the filtered input signal, qt is the theoretical
response while q2 is the measured value. 2q1 is two times the vertical angle.

three fast ramps that each have a magnitude of π/2rad and last for 0.35s. After this, there
is another fast sine wave that is centred on the −π/2rad bent configuration. Finally, the
trajectory finishes with a slow ramp that takes 0.7s to return to the upright configuration.
The two sets of fast sine waves featured in the experiment have an amplitude of π/6rad and
a frequency of 2 Hz, which is more than three times higher than the frequency of the waves
tracked by Acrobot (0.63 Hz [59]) and twice the frequency of the waves tracked by Tippy
(1 Hz [4]). The tracking delay of the system (between qt and q2) is less than half the delay
found in the aforementioned studies, with Tippy having a tracking delay of 0.15Tc, Acrobot
of 0.18Tc, and the new balancing machine of 0.077Tc, where Tc is different for each robot,
being a physical property of the machine. Furthermore, the delay introduced by the IMU
does not impact the performance of the controller, which is consistent with the simulation
outcomes presented in [18].

The front foot, which is the contact point closer to the camera, bears most of the robot’s
weight, while the rear contact is prone to slipping when the upper link undergoes rapid
motions involving large accelerations and forces. This slipping causes a yawing motion,
with qy representing the yaw angle. Although the planar controller with only one actuated
joint cannot control these out-of-plane motions, the fact that they do not significantly affect
the controller’s performance demonstrates its robustness. Throughout the experiment, these
small turns result in a cumulative rotation of about 6.3◦. The controller responds to such

5.3 Experimental Results 78

0 2 4 6 8 10 12

-3 /4

- /2

- /4

0

/4

/2

3 /4
q

c
q

f
q

t

q
2

2 q
1

(a)

12 14 16 18 20 22 24 26 28

-3 /4

- /2

- /4

0

/4

q
c

q
f

q
t

q
2

2 q
1

(b)

Figure 5.3 Enlarged views of Figure 5.2.

5.3 Experimental Results 79

5 10 15 20 25
-0.3

-0.2

-0.1

0

0.1

0.2

0.3

q
t
 - q

2

Figure 5.4 Tracking error through the experiment after the robot self-balanced itself.

11.5 12 12.5 13 13.5 14 14.5 15 15.5

- /6

- /12

0

/12

/6

q
c

q
2

5 q
y

Figure 5.5 The back foot slips during the second sine wave. The controller is able to respond
to a 0.1 rad slip with an overshoot of 0.065 rad without losing its balance. 5qy is five times
the yaw angle.

5.3 Experimental Results 80

22 22.5 23 23.5 24 24.5 25

-3/4

- /2

- /4

0

/4

q
c

q
2

5 q
y

Figure 5.6 The back foot slips during the third sine wave, causing the robot to rotate in the
yaw direction. Although the magnitude of the slip is small when compared to Figure 5.5, the
unbalanced configuration of the robot causes an initial overshoot during the first sine cycle.
5qy is five times the yaw angle.

events with a small overshoot in the trajectory tracking while ensuring system stability and
controllability. Figure 5.5 shows the overshoot during the tracking of the first set of fast sine
waves, where the back foot of the robot slips back and forth on every cycle, causing qy to
vary in a sinusoidal way. The accompanying video of [5] provides a clear illustration of
this effect. The second set of fast sine waves has the same magnitude and frequency as the
first one but has a mean value of −π/2rad. In this specific configuration, even a slight slip
results in significant overshoot, as seen in Figure 5.6. Nonetheless, the controller responds
effectively to the overshoot and recovers good tracking after one sine cycle. Figure 5.2 shows
a small overshoot at time 19 s followed by a compensation undershoot; this behaviour is the
result of the foot slipping during the tracking of fast ramps with π/2 rad amplitude and 0.35 s
duration.

Other evidence of the robustness of the controller is presented in the accompanying video
of [5]. The video shows the robot being intentionally disturbed by the operator, who hits
it with a tennis ball and pushes it with a rod. Despite these unexpected disturbances, the
robot is able to maintain its balance. Figure 5.7 and the accompanying video of [5] show the
effects of the tennis ball.

5.4 Conclusion 81

Figure 5.7 In the left picture, the robot is about to be hit by a tennis ball. In the central
picture, the robot reacts to the external disturbance by making an excursion of the upper link
to maintain its balance. The graph on the right shows the angular position of the upper link
after being hit by the ball.

5.4 Conclusion

This chapter presented the first successful experimental demonstration of the general balance
control theory on a floating base robot that functions as an inverted double pendulum. The
results of the experiment showcase the controller’s capacity to accurately track slow and
fast ramps and sinusoids while being able to respond to unforeseen circumstances, such as
slipping and external disturbances, with only an acceptable level of overshoot. The robot
could stand up autonomously and balance indefinitely without falling over, proving the
reliability of the hardware and the balance controller. Furthermore, even with the more
complicated dynamics of a general double pendulum, all calculations (except for the filtered
input signal) are carried on on-board by a 16-bit micro-controller running at a servo rate of
1kHz proving the light weight of the control algorithm.

Chapter 6

Balancing on a Rolling Contact

This chapter presents an extension of the general balance controller described in Chapter 4.1.
This extension replaces the previous point-foot assumption with a circular-foot assumption,
enabling the controller to effectively govern robots that maintain balance and move on a
rolling contact. Section 6.1 presents the new controller under the assumption of a robot
balancing on flat horizontal terrain. The controller is tested and validated in simulation and
on a real robot. Section 6.2 extends the controller’s range of applicability to robots balancing
on slopes and validates it through simulations only. The contents of Section 6.1 have already
been accepted for publication in [135] (© 2023 IEEE, reproduced with permission) and
are reported here because they represent a significant theoretical contribution of this thesis,
which is then validated with practical experiments. The figures and tables in Section 6.1 are
taken from [135].

6.1 Balancing on a Horizontal Surface

The theory presented in this section is applicable to general planar robots that balance on
a rolling contact on flat, horizontal ground. However, it will be developed for the special
case of an inverted double pendulum. The extension to the general case follows the same
procedure as described in [18 § 6].

6.1.1 Robot Model

The model we shall use is shown in Figure 6.2, and we shall call it a rolling double pendulum.
It consists of an upper link (Body 2) which is connected to a lower link (Body 1) via an
actuated revolute joint (Joint 2) with joint variable q2. The lower link rolls without slipping

6.1 Balancing on a Horizontal Surface 83

Figure 6.1 Photos of the balancing machine used for the experiments. On the left, the robot
is in a resting position, not operating. In the other pictures it is actively balancing with the
upper link upright (centre) and with an angle of π/2 with respect to the lower body (right).

Figure 6.2 Schematic model of the rolling double pendulum.

6.1 Balancing on a Horizontal Surface 84

Body i m [kg] cx [m] cy [m] L [m] I [kg m2]
r 0 0 0 r 0
1 1.28 0 0.25-r 0.28-r 0.0099
2 0.705 0 0.114 0.3 0.0121

Table 6.1 Considering body i: m is the mass, cx and cy are the coordinates of the centre of
mass with respect to the body reference frame, L is the length of the body, I is the inertia of
the body at the centre of mass. r is the radius of the rolling contact and varies among the
experiments.

over a supporting surface (the ground) which is assumed to be flat and horizontal; and the
portion of the lower link that makes contact with the ground is a circle of radius r. The lower
link may therefore be a rounded foot, as shown in Figure 6.2; but it could also be a wheel,
and this will be discussed in Section 6.1.7. The special case r = 0 is allowed, and in this case
the model simplifies to an inverted double pendulum on a point foot.

The rolling contact is modelled as a combination of a revolute joint located at the centre of
the circle and a prismatic joint in the horizontal direction. The former has a joint variable q1,
which is chosen as the independent variable of the rolling contact, and which is measured from
the vertical as shown in Figure 6.2. The latter has a joint variable qr, which is a dependent
variable constrained to have the value qr = −rq1. We define the vector q = [qr q1 q2]

T to
be the vector of all joint variables, and q̄ = [q1 q2]

T to be the vector of independent joint
variables.

Table 6.1 presents the numeric values of the kinematic and inertia parameters of the robot
used in the simulation experiment in Section 6.1.4, considering a range of radii. The robot
used for the physical experiment in Section 6.1.6 has r = 0.03m and its kinematic and inertia
parameters are shown in Table 6.3.

Under the assumption that the robot never slips or loses contact with the ground, the
equation of motion of the unconstrained robot isHrr Hr1 Hr2

H1r H11 H12

H2r H21 H22


q̈r

q̈1

q̈2

+

Cr

C1

C2

=

 0
0
τ2

 (6.1)

where Hi j are the elements of the joint-space inertia matrix, q̈i are the joint accelerations, Ci

are the elements of the bias vector containing Coriolis, centrifugal and gravitational terms,
and τ2 is the joint torque acting on joint 2.

6.1 Balancing on a Horizontal Surface 85

Since qr is dependent on q1, it is necessary to explicitly express the motion constraints
[136] to apply the general balance controller described in Chapter 4. The explicit constraints
map the independent variables’ position, velocity and acceleration to the other joint variables.
Having defined q as the vector of all joint variables, q̄ at the vector of independent joint vari-
ables, and r as the radius of the contact surface, Equations 6.2 and 6.3 describe respectively
velocity and acceleration constraints.

q̇ = G ˙̄q ;

q̇r

q̇1

q̇2

=

−r 0
1 0
0 1

[
q̇1

q̇2

]
(6.2)

q̈ = G ¨̄q+ Ġ ˙̄q = G ¨̄q+g = G ¨̄q (6.3)

since the matrix G is not time varying Ġ = 0 and therefore the vector g = 0 always.
Given the matrix G and vector g, the number of variables of the system can be reduced by

applying the motion constraints. The constrained system is a function only of the independent
variables q̄ [136]. If the unconstrained virtual robot can be described by Equation 6.1, then
the equation of motion for the constrained system is

HG ¨̄q+CG = u (6.4)

where
HG = GT HG , CG = GT (C+Hg) and u = GT

τ = [0 τ2]
T (6.5)

6.1.2 Tracking Error

This section demonstrates the need for a rolling-contact extension to the balance controller
in [18] by showing in simulation that tracking accuracy declines substantially if a round foot
is approximated with a point foot. The simulation was performed in Simulink R2020b using
the integrator ode45 with relative tolerance set to 10−6 and other parameters at their default
values.

The results are shown in Figure 6.3. In this graph, ‘cmd’ is the motion command signal
for the actuated joint, and the job of the balance controller is to make this joint follow the
command signal while simultaneously maintaining the robot’s balance. The signal qt is the
theoretical response as explained in Section 4.1. It is the response that the balance controller

6.1 Balancing on a Horizontal Surface 86

0 2 4 6 8 10 12 14 16

-2

-1

0

1

2

Figure 6.3 Tracking position for joint q2 for a rolling double pendulum with r = 2cm. cmd
is the desired trajectory, qt is the theoretical response, q2 F is the tracking of the balance
controller assuming a fixed contact point, and q2 R is the tracking of the balance controller
assuming a rolling contact point.

is programmed to produce, and it is defined as

qt(s) =
1

1+ s/(−λ4)
cmd(s) =

1
1+0.05s

cmd(s) (6.6)

where λ4 is the fourth pole of the balance controller described in Chapter 4. Tracking error
is therefore defined to be the difference between the theoretical and actual response. The
two signals q2 F and q2 R are the actual responses of the point-foot and round-foot balance
controllers, respectively. Although both controllers do a good job of maintaining the robot’s
balance, it can be seen that the tracking accuracy of the point-foot balance controller is
substantially worse than that of the round-foot balance controller.

To obtain these results, the simulator models the dynamics using the parameters in
Table 6.1 with r = 2cm; the round-foot controller uses the same parameters; and the point-
foot controller uses the same parameters but with r = 0. Both controllers have their poles
and zeros set as follows: one pole is set at −1/Tc in its current configuration, as calculated
by the controller using its own model; two more poles are set to a constant value equal to
−1/T ∗

c where T ∗
c = Tc when the robot is in its upright vertical configuration; the two zeros

are set to cancel these two poles; and the fourth pole, which is the one that determines the
theoretical response, is set at −20rad/s in both cases. Also, both controllers employ the

6.1 Balancing on a Horizontal Surface 87

acausal filter described in Section 4.1 to filter the input signal qc, which implements leaning
in anticipation. Note that Tc depends on r, so the two controllers are using different values of
Tc both in the feedback loop and in the acausal filter.

6.1.3 New Balance Controller

The planar balance controller presented in Chapter 4 and then experimentally demonstrated
in [4], Section 4.5 and Chapter 5 assumes the robot to be balancing on a single fixed point in
2D or a knife edge in 3D. In [4], the robot behaves as a reaction wheel pendulum whose base
is fixed to the ground via a revolute joint, and the balancing point coincides with the rotation
axis of the joint. In Section 4.5 and Chapter 5, instead, the robot is an inverted pendulum
which is not fixed to the ground. It has two contact points with the floor aligned with the
upper link’s rotation axis, which mimics a knife edge contact. In every case, the controller
assumes the contact point is fixed while the robot balances.

In contrast, the rolling double pendulum’s contact point does move, and, as the results
of Section 6.1.2 have just shown, it is important that the balance controller takes this into
account. We therefore proceed to develop an extension of the theory in [18] to take this
movement into account. Let L be the angular momentum of the whole robot about the
support point at the current instant. From elementary mechanics, L̇ must equal the sum of
the moments about the support point of each external force acting on the robot; but the only
external force with a nonzero moment is gravity, and so we have

L̇ =−mg(cx −qr)+m

[
q̇r

0

]
×

[
ċx

ċy

]
(6.7)

where m is the mass of the robot and g is the magnitude of the gravitational acceleration; cx

is the position, and ċx and ċy are the velocity in the x and y direction of the CoM with respect
to the reference frame fixed at the origin; qr and q̇r are position and velocity in the x direction
of the contact point. The first element of Equation 6.7 takes into account the position of the
rolling contact, while the second its velocity. Since its contribution is two order of magnitude
below the other elements, the second term of Equation 6.7 can be neglected. Therefore,
Equation 6.7 (and its derivatives) can be simplified to

L̇ =−mg(cx −qr) =−mg(cx + rq1) (6.8)

L̈ =−mg(ċx − q̇r) =−mg(ċx + rq̇1) (6.9)

6.1 Balancing on a Horizontal Surface 88

...
L =−mg(c̈x − q̈r) =−mg(c̈x + rq̈1) (6.10)

where ċx and c̈x are the velocity and acceleration in the x direction of the centre of mass
with respect to the reference frame fixed at the origin; and q̇r and q̈r are the velocity and
acceleration in the x direction of the contact point.

As the independent variable q1 is an angle, and as the rolling contact is a rotation about
the support point, we can say that the angular momentum of the constrained robot about the
contact point is

L = p1 = HG11 q̇1 +HG12 q̇2 (6.11)

which follows from a special property of joint-space momentum that is proved in Appendix
B of [18] and presented in Section 4.1.

All the considerations made in [18] about the relationship between joint position and
velocity variables, and L, L̇ and L̈ are valid also in case of rolling contact. Both L and L̈ depend
linearly on the robot’s velocity, implying that L = L̈ = 0 is equivalent to q̇1 = q̇2 = 0 except
in special circumstances when the robot is physically unable to balance (see Section 6.1.5).
Also, L̇ is a constant multiple of (cx + rq1). As shown in [18] and [132], any controller that
makes

L = 0 , L̇ = 0 and L̈ = 0 (6.12)

will make the robot balance but will not drive the actuated joint to the desired position.
To allow the robot to track a desired trajectory for the actuated joint, we need an expression

for ċx in terms of the joint velocity variables. This can be obtained by adding an extra fictitious
prismatic joint acting in the x direction between the joint q1 of the constrained robot and
the ground. The extra joint is called joint 0 to preserve the numbering of the existing joints.
The extra joint does not move, and therefore does not affect the dynamics. Its purpose is to
increase the number of coefficients in the constrained equation of motion, which becomesHG00 HG01 HG02

HG10 HG11 HG12

HG20 HG21 HG22


 0

q̈1

q̈2

+

CG0

CG1

CG2

=

u0

0
u2

 . (6.13)

The special property of the joint-space momentum used before to define p1 = L can be used
in this case to define p0 as the linear momentum of the whole robot in the x direction, so

p0 = mċx = HG01 q̇1 +HG02 q̇2 . (6.14)

6.1 Balancing on a Horizontal Surface 89

Combining Equations 6.9 and 6.14 we get

L̈ =−g(p0 +mrq̇1) =−g(HG01 +mr)q̇1 −gHG02 q̇2 (6.15)

and combining Equations 6.13 and 6.10 we get

−
...
L /g = u0 +mrq̈1 = (HG01 +mr)q̈1 +HG02 q̈2 +CG0 (6.16)

where the term u0 = mc̈x is the x component of the ground reaction force acting on the robot.
So, also in the case of rolling contact, there is an equation relating

...
L to the two independent

joint accelerations and a pair of linear equations relating L and L̈ to the two independent joint
velocities [

L

L̈

]
=

[
HG11 HG12

−g(HG01 +mr) −gHG02

][
q̇1

q̇2

]
. (6.17)

To simplify the notation, we can then define a new matrix called HR, defined as

HRi j =

(HGi j +mr) if (i, j) = (1,0) or (i, j) = (0,1)

HGi j otherwise .
(6.18)

Equation 6.16 becomes
−

...
L /g = HR01 q̈1 +HR02 q̈2 +CG0 (6.19)

and Equation 6.17 now reads[
L

L̈

]
=

[
HR11 HR12

−gHR01 −gHR02

][
q̇1

q̇2

]
. (6.20)

Solving this equation for q̇2 gives

q̇2 = Y1L+Y2L̈ (6.21)

where
Y1 =

HR01

D
, Y2 =

HR11

gD
(6.22)

and
D = HR01HR12 −HR11HR02 . (6.23)

6.1 Balancing on a Horizontal Surface 90

The obtained equations are the same as those described in [18] with the only difference
that the H matrix is the one of the constrained rolling robot and not the one of the original
robot. Nevertheless, it is possible to use the same control law described in Chapter 4, which
is

...
L = kddL̈+ kdL̇+ kLL+ kq(qa −qd) , (6.24)

where qa = q2 is the only actuated joint and qd is the input filtered command for such joint,
and L, L̇ and L̈ are defined respectively by Equations 6.11, 6.8 and 6.9. Also, the definition
of the feedback gains obtained via pole placement remains unchanged

kdd =−a3 kd =−a2 +a0Y2/Y1

kL =−a1 kq =−a0/Y1 ,
(6.25)

where
a0 = λ1λ2λ3λ4

a1 =−λ1λ2λ3 −λ1λ2λ4 −λ1λ3λ4 −λ2λ3λ4

a2 = λ1λ2 +λ1λ3 +λ1λ4 +λ2λ3 +λ2λ4 +λ3λ4

a3 =−λ1 −λ2 −λ3 −λ4 ,

(6.26)

and λ1, . . . ,λ4 are the chosen values of the poles.
The controller’s output must be either an acceleration or a torque for the actuated joint;

that is, either q̈2 or u2. Combining Equations 6.13, 6.18 and 6.19 we obtain 0 HR01 HR02

0 HR11 HR12

−1 HR21 HR22


u2

q̈1

q̈2

=

−
...
L /g−CG0

−CG1

−CG2

 (6.27)

which can be solved for both q̈2 and u2; and u2 = τ2 as shown in Equation 6.5.

6.1.4 Simulation Experiments

In this section are reported the results of simulation experiments where the robot starts in
a vertical position (qr = q1 = q2 = 0) and then tracks a desired trajectory for joint 2 while
balancing on a rolling contact. The robot model, the initial conditions, the zeros and the
poles of the balance controller are the same as Section 6.1.2. The experiment is performed
every time with a different radius of the contact surface. The initially tested radii are 0, 2, 4,
6, 8, and 10 cm. Although the reference trajectory is the same for all the experiments, the
filtered command signal produced by the acausal filter is specific for each experiment. This

6.1 Balancing on a Horizontal Surface 91

0 2 4 6 8 10 12 14 16

-3

-2

-1

0

1

2

Figure 6.4 Tracking position for joint 2 with varying radius [m]

is because the time constant of the acausal filter is Tc, and Tc varies with r. Some example
values of Tc are reported in Table 6.2.

Figure 6.4 reports the tracking position of joint 2. The best performance is obtained when
the radius is zero, meaning that the robot is balancing on a fixed point and not on a rolling
contact. The tracking accuracy with r = 0.02m is almost as good as with r = 0m and then
gradually decreases as r increases, until r = 0.08m. The increment of the radius to r = 0.1m
causes a large reduction in the tracking performance. The reason behind this behaviour is the
topic of Section 6.1.5.

6.1.5 Linear Velocity Gain

A robot’s performance at balancing is limited by its physical ability to balance, which is a
property of the robot itself, not the control system. Linear velocity gain, as defined in [133],
provides a quantitative measure of a robot’s physical ability to balance. It is defined as the
ratio of the change in the horizontal velocity of the CoM to the change in velocity of the joint
used to balance the robot when both changes are caused by an impulse at that joint. For the
robot used in these experiments, the velocity gain is

Gv =
∆ċx

∆q̇2
=

−D
mHR11

(6.28)

6.1 Balancing on a Horizontal Surface 92

r [m] 0 0.02 0.04 0.06 0.08 0.10 0.20 0.225 0.25

Gv[m] 0.0218 0.0177 0.0135 0.0094 0.0053 0.0011 -0.0196 -0.0247 -0.0299

Tc [s] 0.1899 0.1965 0.2040 0.2123 0.2216 0.2324 0.3277 0.3777 0.4609

Table 6.2 Velocity gain Gv and toppling time constant Tc with the robot in its vertical position
according to the radius value r.

0 0.05 0.1 0.15 0.2 0.25

-0.04

-0.02

0

0.02

Figure 6.5 Velocity gain with the robot in vertical position (qr = q1 = q2 = 0), where
Gv =−0.207r+0.0218

where D and HR11 are respectively described in Equations 6.23 and 6.18, and m is the total
mass of the robot. A robot’s physical ability to balance is proportional to |Gv|, and it is
physically impossible for a robot to balance in any configuration where Gv = 0.

The performance deterioration shown in Section 6.1.4 is directly related to the reduction
of the magnitude of the linear velocity gain Gv with increasing radius. Figure 6.5 and
Table 6.2 clearly show a negative linear relationship between the velocity gain and the radius
of the rolling contact. With a rolling double pendulum with dynamic parameters described in
Table 6.1, it is possible to calculate the velocity gain as

Gv =−0.207r+0.0218 (6.29)

when the robot is in a vertical position, qr = q1 = q2 = 0. As the radius increases, the velocity
gain decreases, reducing the robot’s physical ability to balance. A radius of 0.1055 m makes
the velocity gain equal to zero, making the robot physically unable to balance.

6.1 Balancing on a Horizontal Surface 93

3.6 3.8 4 4.2 4.4 4.6 4.8 5

-0.1

-0.05

0

0.05

0.1

Figure 6.6 Leaning in anticipation effects in case of Gv positive r = 0.02 and negative
r = 0.2.

Any robot requires the magnitude of the velocity gain to be as high as possible to balance
better, being physically unable to balance when Gv = 0. This implies D= 0 via Equation 6.28,
and, as a consequence, the impossibility of evaluating the gains Y1 and Y2 with Equation 6.22.
Figure 6.5 shows that the linear relation between the radius and the velocity gain continues
and becomes negative with the increasing radius. The change of sign in the velocity gain
implies that the controller moves the upper link in the opposite direction to maintain the
balance with these new radii compared to the radii tested in Section 6.1.4. This effect can
be observed in Figure 6.6, where the robot leans in anticipation in the opposite direction
to compensate for the disturbance introduced by tracking the same trajectory. If the linear
velocity gain is positive, there is a positive variation of q1, negative otherwise.

The three red dots in the bottom right corner of Figure 6.5 represent three radii of the
rolling contact that makes the robot controllable even with a negative linear velocity gain.
The tested radii are 20, 22.5, and 25 cm, with the last value implying that the lower link’s
centre of mass coincides with the rolling contact’s rotation axis. The simulation results are
shown in Figure 6.7. The tracking is accurate, with the accuracy increasing with the length
of the radius. Such behaviour is due to the increase in the magnitude of the velocity gain,
as shown in Table 6.2. This data demonstrates that it is the decrease in the robot’s physical
ability to balance, rather than some defect in the balance controller, that accounts for the
decline in tracking accuracy observed in Figure 6.4.

6.1 Balancing on a Horizontal Surface 94

0 2 4 6 8 10 12 14 16

-2

-1

0

1

2

Figure 6.7 Tracking position for joint 2 with varying radius [m]

It is worth noting that the velocity gain of the robot changes with the configuration of
the robot. This means it is not constant throughout the experiment, as shown in Figure 6.8.
A robot with a rolling contact with a radius between 10 and 20 cm is physically unable to
track the desired trajectory since the velocity gain will cross the zero line while moving. This
is because the velocity gain becomes more positive when the upper link has an angle with
respect to the lower link, meaning that it increases the performance of a robot with a radius
smaller than 10 cm and deteriorates those of a robot with a radius above the threshold. A
radius of 20 cm is the smallest one that allows the robot to safely track the desired trajectory.

6.1.6 Physical Experiment

This section describes an experiment in which the tracking performance of the general
implementation of the balancing controller is compared with the new rolling-contact balance
controller on a real robot. The obtained results are presented together with the simulated and
theoretical results.

Robot Description

The robot used for this experiment is shown in Figure 6.1, and it is essentially the underac-
tuated inverted double pendulum described in Chapter 5. Electronics and actuator are the
same, but minor mechanical changes are present, which are a gear ratio G = 12 and a bigger

6.1 Balancing on a Horizontal Surface 95

0 2 4 6 8 10 12 14 16

-0.04

-0.02

0

0.02

0.04

Figure 6.8 Robot velocity gain during the experiment with varying radius [m].

Body i m [kg] cx [m] cy [m] L [m] I [kg m2]
1 0 0 0 0.03 0
2 1.41 0 0.22 0.25 0.0083
3 0.44 0 0.105 0.3 0.0078

Table 6.3 Dynamic and kinematic parameters of the robot used for the physical experiment
modelled as in Figure 6.2. Considering body i: m is the mass, cx and cy are the coordinates
of the centre of mass with respect to the body reference frame, L is the length of the body, I
is the inertia of the body at the centre of mass.

drive wheel to reduce the wear effects experienced in Chapter 5. The main difference is the
contact point with the ground. In Chapter 5, the robot balances on a line segment formed by
two-point contacts at the tip of its two sharp stilts and the ground. In this work, instead, the
tip of the stilts is a round surface with a radius r = 0.03 m. The choice of the radius size is
not casual. In fact, it is the same radius that Skippy will have in its foot.

With the joint variables as in Figure 6.2, where qr describes the horizontal motion of the
rolling contact, q1 is the angle of the lower body with respect to the vertical, and q2 is the
angle of the upper link with respect to the lower, the kinematic and dynamic parameters of
both the physical robot and its simulated model are reported in Table 6.3.

6.1 Balancing on a Horizontal Surface 96

0 2 4 6 8 10 12 14 16

-2

0

2

Figure 6.9 Tracking position for joint 2. cmd is the desired trajectory, qt is the theoretical
response, qs is the simulated output of the rolling balance controller, q2 F is the tracking of
the balance controller assuming a fixed contact point, and q2 R is the tracking of the balance
controller assuming a rolling contact point. q2 F and q2 R refer to the physical experiment.

Experiment Description

The experiment starts with the robot in a resting position, with the upper link touching the
ground. Then the robot balances itself in less than 2.5 seconds and starts tracking the same
trajectory as Sections 6.1.2 and 6.1.4. The trajectory consists of ramps and a sine wave with
an amplitude of π/2. The controller has its poles and zeros set with the same strategy used in
simulation but with different values. One pole is set at −1/Tc, where Tc is the time constant
of toppling of the robot in its current configuration, as calculated by the controller using its
own model; two more poles are set to a constant value equal to −1/T ∗

c =−1/0.192, where
T ∗

c = Tc in the robot’s upright vertical configuration; the two zeros are set to cancel these two
poles; and the fourth pole, which is the one that determines the theoretical response, set at
−14rad/s. The input signal is filtered with the acausal filter described in [18] with a time
constant Tf equal to the robot’s time constant of toppling in the upright vertical configuration.

Experimental Results

The experimental results are shown in Figure 6.9. The first experiment (green line) tests the
controller used in Chapter 5 with the new mechanical setup. The robot can barely balance
itself, and it is completely unable to track the desired trajectory. Then the new controller is

6.1 Balancing on a Horizontal Surface 97

0 2 4 6 8 10 12 14 16

-0.01

-0.005

0

0.005

0.01

0.015

Figure 6.10 Estimated position of the centre of mass throughout the experiment. cx F is the
CoM position when the balance controller assumes a fixed contact point, and cx R is when
the balance controller assumes a rolling contact point.

tested (purple line), and now not only can the robot balance itself in less than 2.5 seconds,
but it can also accurately track the desired trajectory while balancing (see accompanying
video of [135]). The reason for this behaviour can be found in Figure 6.10, where it can be
seen that while balancing with the new controller, the position of the centre of mass is very
close to the value of qr. The CoM position cx is not directly measured, but it is evaluated in
real-time by the robot control unit from the robot’s kinematic model given the measured joint
angle values. In this situation, the centre of mass is aligned with the contact point; hence the
robot is balanced. The old balance controller, though, is unaware that the contact point with
the ground has moved and tries to move the centre of mass to be above where it thinks that
the contact point is. As a consequence of this motion, the robot starts oscillating, making
this controller unusable for balancing this type of robot. Figure 6.10 also shows the effect of
the leaning in anticipation caused by the acausal filter, with the robot leaning in the opposite
direction to compensate for future disturbance introduced by the trajectory tracking. For
example, before the first ramp at t = 5s, the centre of mass of the robot controlled with the
rolling balance controller, cxR line of Figure 6.10, moves in the opposite direction before the
ramp begins. Similar movements can be seen just before the second and third ramps.

6.1 Balancing on a Horizontal Surface 98

Figure 6.11 Schematic model of the robot balancing on a wheel

6.1.7 Balancing on a Wheel

The results obtained in Section 6.1.4 suggest that this controller can also be used to balance a
stick on a wheel, as shown in Figure 6.11. With respect to the dynamic parameters described
in Table 6.1, only some minor changes to the definition of Body 1 have to be made, which
are L1 = 0 and cy1 = 0. The new robot is essentially made of a wheel of radius r = 0.2m
and a stick connected to the centre of the wheel by means of an actuated revolute joint. The
wheel can rotate without slipping; hence the robot can move horizontally in the plane.

The modelling technique used in Section 6.1.4 is also valid for this robot. Referring to
Figure 6.11, qr is the rolling distance, q1 is the angle of the coordinate frame of the wheel
x1 − y1 with respect to the vertical, and q2 is the angle of the actuated joint with respect to
the coordinate frame of the wheel. The body coordinate frame x1 − y1 is located at the centre
of the wheel, and it rotates with the wheel itself; the axis y1 is aligned with the vertical when
q1 = 0.

The system can track the desired trajectory for joint 2 very efficiently due to the high-
velocity gain Gv = −0.031. In a balanced configuration, q1 + q2 = 0, so by making q2

track a desired trajectory, q1 is essentially equal to −q2. As a consequence, the robot rolls
significantly while tracking the desired trajectory (which is the same as Section 6.1.4) as
shown in Figure 6.12 and in the accompanying video of [135].

The controller can be adapted to make the robot travel at a commanded velocity. All that
needs to be done is to set the position command for q2 equal to the integral of 1/r times the
velocity command. This works because the stick will be upright when the robot is travelling
at a constant velocity, so q̇1 =−q̇2, hence q̇r = rq̇2. The example reported in Figure 6.13,
shows how the stick’s lean angle (q1 +q2) varies while the robot travels at a commanded
velocity.

6.1 Balancing on a Horizontal Surface 99

0 5 10 15

-2

-1

0

1

2

Figure 6.12 Tracking position for joint 2 with radius of the wheel r = 0.2 m. cmd is the
desired trajectory, qt is the theoretical response, q2 is the tracking of the balance controller,
qr and q1 are the other two joints positions.

0 1 2 3 4 5 6 7

-0.2

0

0.2

0.4

0.6

0.8

-0.2

0

0.2

0.4

0.6

0.8

Figure 6.13 Tracking velocity for joint qr. cmd is the desired travelling velocity, q̇r is the
travelling velocity, and (q1 +q2) is the stick lean angle.

6.2 Balancing on a Slope 100

(a) (b)

Figure 6.14 (a) Schematic model of the rolling double pendulum balancing on a slope; (b)
detail showing that the location of the global reference frame depends and the contact point
when q1 = qr = 0. d = r sin(α) is the horizontal offset.

6.2 Balancing on a Slope

This section extends the work presented in Section 6.1 by removing the constraint of the
robot balancing on a flat horizontal surface and replacing it with a slope whose magnitude is
known in advance. This section is organized as follows. First Section 6.2.2 shows the need
of an extension of the Rolling Contact balance controller. Then Section 6.2.3 presents the
new ‘Rolling Slope’ balance controller and Section 6.2.4 displays the results of simulated
experiments.

6.2.1 Model Description

The robot used in this section is shown in Figure 6.14. It is modelled in the same way as
in Section 6.1 with the only difference being that the prismatic joint modelling the ground
contact qr moves on a slope with an angle α with respect to the horizontal; there is no
variation in the definition of q1 and q2, nor in the definition of the matrix G and the vector g.
The location of the global reference frame varies depending on the slope and coincides with
the contact point when q1 = qr = 0, as shown in Figure 6.14b.

6.2 Balancing on a Slope 101

0 5 10 15

-4

-2

0

2

Figure 6.15 Tracking position for joint 2 for a rolling double pendulum balancing on a 22.5◦

slope. cmd is the desired trajectory, qt is the theoretical response, RC is the tracking of the
balance controller assuming a flat horizontal surface, and RS is the tracking of the balance
controller assuming the robot balancing on a known slope.

6.2.2 Tracking Error

This section demonstrates the need of an extension to the Rolling Contact balance controller
when the robot balances on a slope. The need of a new controller is showed in simulation,
where the tracking accuracy decreases in the presence of a slope. The simulation was
performed in Simulink R2020b using the integrator ode45 with relative tolerance set to 10−6

and other parameters at their default values. The reference trajectory and its filter, and the
balance controller are configured in the same way as in Section 6.1.4. The time constant
of the acausal filter Tf is constant and it is equal to the value of the constant of toppling of
the robot in the balanced vertical configuration (q2 = 0, and q1 varies with the angle α). In
this experiment the slope has an angle α =−22.5◦ and Tf = 0.187s. The controller has its
poles and zeros set as follows: one pole is set at −1/Tc in its current configuration, two
more poles are set to a constant value equal to −1/T ∗

c , where T ∗
c = Tc in the robot’s vertical

configuration; the two zeros are set to cancel these two poles; and the fourth pole, which
determines the theoretical response, is set to −20rad/s. The results are shown in Figure 6.15.
The ‘Rolling Contact’ controller is able to balance the robot but the tracking is not accurate
with a slope angle α =−π/8rad =−22.5◦.

6.2 Balancing on a Slope 102

α [rad] −π/4 −π/8 0 π/4 π/8
q1 [rad] 0.0842 0.0456 0.000 -0.0456 -0.0842
Tc [s] 0.187 0.191 0.192 0.191 0.197

Table 6.4 Leaning angle q1 and toppling time constant Tc with the robot balancing with
q2 = 0 according to the slope value α .

6.2.3 Rolling Slope Controller

The rolling double pendulum’s contact point moves while balancing, and when the balancing
surface is not horizontal, it moves both horizontally and vertically. As a consequence, the
horizontal distance of the centre of mass with respect to the contact point is affected by the
angle of the slope. This definition takes into account the position of the rolling contact point
but not its velocity, as in Section 6.1.3. Also in this case the only external force acting on the
robot is the one due to gravity, therefore the derivative of the angular momentum and its first
two derivatives are

L̇ =−mg(cx −qrcos(α)) =−mg(cx + rq1cos(α)) (6.30)

L̈ =−mg(ċx − q̇rcos(α)) =−mg(ċx + rq̇1cos(α)) (6.31)
...
L =−mg(c̈x − q̈rcos(α)) =−mg(c̈x + rq̈1cos(α)) (6.32)

All the dynamic considerations made in Section 6.1.3 are still valid and after replacing
Equations 6.9 and 6.10 with Equations 6.31 and 6.32 we can now define a new matrix Hα as

Hαi j =

(HGi j +mrcos(α)) if (i, j) = (1,0) or (i, j) = (0,1)

HGi j otherwise .
(6.33)

All the other considerations made for balancing a rolling inverted pendulum on a flat hor-
izontal surface are valid also in case of balancing on a slope, given that the matrix HR of
Section 6.1.3 is replaced with the newly defined matrix Hα . The control law and its gains,
and the output mapping are unchanged.

6.2.4 Simulation Experiments

This section reports the results of simulation experiments. The experiments start with the
robot in an upright and balanced position, where q2 = 0, and q1 and qr depend on the angle
of the slope. Then the robot tracks a desired trajectory for joint 2 while balancing on a

6.2 Balancing on a Slope 103

0 5 10 15

-2

-1

0

1

2

3

Figure 6.16 Tracking position for joint 2 with varying slope.

1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

1.3

1.4

1.5

1.6

Figure 6.17 Detail of tracking position for joint 2 with varying slope.

6.3 Conclusion 104

0 0.5 1 1.5 2 2.5 3 3.5 4

0

2

4

Figure 6.18 Motion of the rolling contact qr with varying slope.

slope. The experiment is performed every time with a different angle of the slope, ranging
from −π/4 to π/4. Although the reference trajectory is the same for all the experiments,
the filtered command signal produced by the acausal filter is specific for each experiment.
This is because the time constant of the acausal filter it Tc, and Tc varies with α , as shown
in Table 6.4 To see if the tracking accuracy is affected when the upper link goes uphill or
downhill, the same trajectory has been tested both with a positive and a negative slope angle
α .

The tracking accuracy is shown in Figure 6.16. It is slightly affected by the slope angle,
with better performance when the angle q2 has the same sign as the slope, as shown in
Figure 6.17. The author attributes this behaviour to the simplifying assumption introduced in
Equation 6.7. When balancing on a slope, the y component of the CoM position and velocity
are affected by the slope angle. Nevertheless, the inaccuracy introduced in the estimation
of L̇ is so minimal that the feedback control loop compensates for it without a significant
variation in the tracking performance (see Figure 6.18).

6.3 Conclusion

This chapter presented an extension to Featherstone’s 2D balance controller in which the
point-foot assumption is replaced with a circular-foot assumption. This extension increases
the generality of the controller so that it can be applied to legged robots with round feet and
to robots that balance and travel on a pair of wheels (i.e., Segway-like robots).

6.3 Conclusion 105

Section 6.1 first demonstrated the need for such an extension, then developed the new
theory, and then demonstrated the effectiveness of the new controller both in simulation
and on a real robot. The newly developed controller has then been extended, and tested in
simulation, to the case of a rolling double pendulum balancing on a slope in Section 6.2. The
presence of a slope doesn’t affect robots balancing on a pointed foot because the foot doesn’t
move while balancing. On the other hand, the slope affects the motion of robots balancing
on a circular foot since the contact point with the ground moves while the robot balances.

Chapter 7

Balancing and Hopping on a Springy Leg

This chapter presents the first implementation of the general balance controller on a robot
balancing and hopping on a springy leg. The robot used for this experiment is Skippy (see
Figure 7.1), fitted with a knife-edge shoe that constrains its motions to a vertical plane. In
this configuration, the robot behaves as an inverted double pendulum. The difference with
Chapter 5, apart from the springy leg, is that now the motor has to compensate for the weight
of the upper link continuously. Due to mechanical constraints, there is not a balanced position
where the robot’s structure compensates for gravity (e.g. q1 = q2 = 0 in Chapter 5).

7.1 The Robot

The robot in this configuration follows the same modelling strategy proposed by Gkikakis
in [1 § 3]. His study represents a preliminary design work for Skippy, particularly the co-
optimization of the various mechanical design parameters and the desired hopping and
balancing behaviours. Skippy can be modelled in this configuration by 10 bodies and 10
joints as in Figure 7.2 and Table 7.1, q = [q1, ...,q10]

T. The first two joint variables, q1 and
q2, are the contact point’s x and y coordinates with respect to the ground, and are used only in
simulation (q1 = q2 = 0 on the real robot). q3 describes the rolling contact motion of the foot
as q3 =−rtoeq4 where rtoe is the radius of the foot as in Figure 7.2, and the rolling contact
is modelled in the same way as in Section 6.1.1. q4 is the angle of the foot with respect to the
vertical and q5 is the ankle-leg angle. q6 is the leg-lever angle and q7 is the lever-torso angle.
q8 is the torso-follower angle and q9 is the torso-rocker angle. q10 is the nut displacement
(towards the motor). Bodies 1 to 3 are fictitious massless bodies that allow the foot to lift off
the ground and roll in simulation. q6+q7 = q67 is called the hip angle, representing the angle
between the carbon fibre tube of the torso and the one of the leg. Figure 7.2 shows Skippy’s

7.1 The Robot 107

(a) (b)

Figure 7.1 Skippy with its springy leg and knife-edge shoe at rest (a) and balancing (b).

body and all the joint variables measured in the real robot. The connection between bodies 6
and 10 is made by springs, called ‘Main’ springs (described later in this chapter), allowing a
greater thrust (than what is achievable with rigid links) at the price of a more complex control.
In the simplified representation of Figure 7.2 the Main springs act in tension, when in reality
the act in compression (see Appendix B Figure B.2 for a complete kinematic diagram).

Two simplifying assumptions are made in this chapter: rigid links are in place of the
Main springs, hence q67 and q10 measurements agree, and the radius of the tip of the foot
(called toe) rtoe = 0, hence the robot balances on a fixed point without rolling and q3 = 0
always.

The rest of this section describes the physical bodies of Skippy and all the real components.
Bodies 1 to 3 are not presented, since they are fictitious massless bodies used only in
simulation. Section 7.2 presents the kinematic model.

7.1.1 Foot

It corresponds to body 4 of the kinematic model. It is made of a 3D printed titanium alloy
(Ti6AL4V), and it is connected to the leg through a spring-loaded revolute joint called the
‘Ankle’, Figure 7.3. The spring is a fiber glass regressive leaf spring and it is called ‘Ankle’
spring, more details in Section 7.1.10. A 3D printed ABS ‘Shoe’ is added to the titanium
piece to constrain its motion in 2D. The shoe makes the contact point a sharp knife edge that

7.1 The Robot 108

Bodies Joint Variable
B1 – fictitious massless body q1 – x coordinate of the contact point
B2 – fictitious massless body q2 – y coordinate of the contact point
B3 – fictitious massless body q3 – x coordinate of the rolling contact
B4 – foot q4 – foot angle
B5 – leg q5 – ankle angle
B6 – lever q6 – leg-lever angle
B7 – torso q7 – lever-torso angle
B8 – follower q8 – torso-follower angle
B9 – rocker+main motor+screw rod q9 – torso-rocker angle
B10 – nut+push rod+main spring+ coupler q10 – nut displacement (towards motor)

Table 7.1 Left: list of bodies; right: list of joint variables.

Figure 7.2 Skippy’s bodies and joints used to control the real robot.

7.1 The Robot 109

(a) (b)

Figure 7.3 (a) Foot assembly and (b) foot assembly constrained.

can be considered a single contact point in 2D, in agreement with the simplifying assumption
of a toe radius equal to zero. The angle of the foot with respect to the leg is measured with
an AksIM-2 absolute magnetic rotary encoder as described in Section 7.1.9.

7.1.2 Leg

It is body 5 of the model. It is a carbon fibre tube which connects the ankle (see Figure 7.3)
to the 4-bar mechanism (see Figure 7.4b).

7.1.3 4-bar Mechanism

The 4-bar mechanism is the type of joint used for Skippy’s hip, details in Figure 7.4. It
connects the leg to the torso and amplifies the lever’s motion so that the lever needs to turn
only 90◦ in order to make the leg turn 180◦, which is its full range of motion. The lever
(body 6) and the follower (body 8) are machined aluminium parts. The hip AksIM-2 absolute
magnetic rotary encoder measures the angle q7, which is the input to the kinematic model
of the 4-bar mechanism. The output is the hip angle q67, also called the ‘Leg’ angle. It
is designed to have a gear ratio between the input-output angle not linear. The non-linear
relationship allows a higher torque transmission when the leg is folded and a higher velocity

7.1 The Robot 110

(a) (b)

Figure 7.4 (a) Schematic representation of the 4-bar mechanism; (b): Physical representation
of the 4-bar mechanism.

transmission when the leg is stretched. The behaviour is required for hopping, where a high
torque transmission rate is necessary to begin the stance phase when the robot is folded, but
a high speed rate is needed when the leg is stretched to hop high.

7.1.4 Torso

It is body 7 of the model, see Figure 7.5. It consists of a carbon fibre tube with an aluminium
fork at the rear (hip) end and the Head frame at the front (crossbar) end. Attached to the
Head, as described in Section 4.4.1, there is Skippy’s Brain, an absolute encoder and the
motors. Consequently, it requires protection from impacts. This is achieved by combining
the protective cushions mounted on the Head and the crossbar.

7.1.5 Crossbar

The symmetric crossbar, or simply crossbar, is one of the two actuated links of Skippy. Two
crossbars have been used throughout the multiple experiments reported in this thesis: the
symmetric crossbar and the asymmetric crossbar. Both crossbars are driven in the same
way (see Section 4.4.1), and they can be exchanged to balance different robots, such as in
Chapter 4 where the robot balances with the symmetric crossbar or Chapters 5 and 6, where it

7.1 The Robot 111

Figure 7.5 Details of Skippy’s bodies.

Figure 7.6 Skippy’s symmetric crossbar.

7.1 The Robot 112

uses the asymmetric crossbar. Skippy’s symmetric crossbar consists of a three-blade reaction
wheel, Figure 7.6. Each blade is made of fibreglass in a specific custom shape, and it can
withstand shocks due to crash landings without breaking. Glued brass weights are at the
edge of each blade to increase the wheel’s inertia. The extremities of the wheel are protected
with shock-absorbing foam covered with an anti-tear pink fabric. The flywheel has a dual
function: it makes the robot balance and protects the Head in case of a crash landing. In this
configuration, the crossbar is not actuated because the robot’s balancing plane is kept vertical
by the physical constraint of the foot (i.e., the Shoe); its only purpose is to protect the Head
in case of falls. Consequently, it is modelled as a mass being part of the torso.

7.1.6 Rocker

It is body 9 in the model, and it is shown in Figure 7.5. It is mounted on top of the Head,
and its primary function is holding the Main motor. On top of the Rocker is shock-absorbing
foam, whose purpose is to protect the Head in case of falls (see Figure 7.1). The Rocker
allows the motor to rotate on an axis parallel to the rotation axis of the hip. This motion
enables the screw rod and push rods to be aligned with the imaginary line connecting the
coupler and the Rocker, more details in Section 7.2, which changes angle with respect to
the torso depending on the position of the lever. Although the body is called Rocker, it also
includes the screw rod and the main motor.

7.1.7 Nut

It is body 10 in the model, and it is shown in Figure 7.5. Although it is called Nut, it also
includes the coupler, push rods and the rigid links that take the place of the Main springs.

7.1.8 Actuation System

The actuation system is shown in Figure 7.7. It comprises a Maxon DC motor DCX32L-GB-
KL-24V which actuates a Misumi BSSC1004-256 ball screw mechanism. The motor shaft is
connected to the screw rod through a Misumi XGT2-19C-6-6 elastic coupler to cope with the
slight misalignment that may arise in the assembly. The ball screw mechanism transforms
the rotational motion of the motor into linear motion of the nut, with a pitch of 4mm. The
motor is controlled by a Pololu G2 24v21 motor driver, enabling the Brain to regulate it via a
PWM signal like the Crossbar motor. The nut, as shown in Figure 7.5, pushes and pulls the
lever of the 4-bar mechanism, opening and closing the Leg angle. The rigid links connecting

7.1 The Robot 113

Figure 7.7 Skippy’s hip actuation system.

the nut to the push-rods will be replaced by the Main springs in future works to increase
Skippy’s jumping capabilities.

7.1.9 Sensors

Skippy, in its 2D springy leg configuration, has four independent variables measured using
four sensors.

• q5 and q7 are measured with two AksIM-2 MB029DCC18BFNT00 absolute magnetic
rotary encoders, with a magnetic ring diameter of 29mm and a resolution of 18 bit,

• q4 is a combination of the torso absolute orientation measured via IMU, q5 and q67,
and

• q10 is linearly converted from the angular position of the Main motor and the screw’s
pitch. The angular position of the motor is measured using a Maxon ENX 16 EASY
incremental position encoder with the same characteristics as the Crossbar motor
encoder, described in Section 4.4.2.

7.1 The Robot 114

Spring LR [mm] θ [rad] F25 [N] FH [%]
Main 195 1.885 550 1.02
Ankle 200 π/3 955 1.32

Table 7.2 Measured parameters used to model the behaviour of the springs. Skippy’s main
spring consists of four physical springs in parallel, and F25 refers to a single physical spring.

7.1.10 Skippy’s Springs

Balancing and hopping are distinct activities. Hopping entails energetic and vigorous
manoeuvres while balancing necessitates precise and gentle motions. Skippy is equipped
with fibreglass curved leaf springs to accomplish both objectives simultaneously. The decision
to employ these springs, as described in the aforementioned work [1 § 5.3], was based on
three primary factors: (1) the requirement for a high ratio of elastic energy to weight, (2)
the necessity for consistent spring-like behaviour, and (3) the desire for a force profile that
diminishes with increasing compression (regressiveness). Steel (for reason (1)) and rubber
(for reason (2)) were excluded as materials due to these considerations. The regressive nature
of the springs is pivotal for Skippy’s performance as it enables greater storage of elastic
energy for a given stroke at a maximum force and increased stiffness at lower force levels.
Consequently, regressive springs supply Skippy with sufficient energy for hopping while
simultaneously providing the stiffness necessary for the robot to achieve rapid and precise
balance.

The springs are fibreglass curved leaf springs with constant thickness and varying width at
rest state, as shown in Figure 7.8. The behaviour of these springs can be accurately described
using three parameters: their resting length LR, the angle θ of the curved arc when at rest, and
the force required to compress them by 25% F25, as shown in Table 7.2. A fourth parameter,
force hysteresis FH , also models the energy loss that occurs in real springs.

I have personally tested the springs with a tensile and compression machine to evaluate
their real behaviour and how accurately the model can describe them, while the Skippy team
realized the model itself and analysed the collected data; the results are shown in Figure 7.9.
Because the Ankle spring always operates in compression, it is tested only for compression,
while the Main spring is tested mainly for compression and slight tension. Both models
accurately describe the behaviour of the springs, except for a slight deviation at the cycle’s
edges.

Both springs have also been tested to their compression limit. Figure 7.10 shows the
results of the failure tests, with both springs failing way beyond the working conditions. Dur-
ing normal operations, the springs behave consistently, as shown in Figure 7.11, guaranteeing

7.1 The Robot 115

the same behaviour over time. These results allow the robot to be used for robot learning,
where the same mechanical behaviour is necessary through the different iterations.

(a)

(b)

Figure 7.8 (a): Geometry of the tapered fibreglass springs [1]; (b): Physical realization of
the Ankle spring

7.1 The Robot 116

150 160 170 180 190 200

0

200

400

600

800

1000

1200

(a)

110 120 130 140 150 160 170 180 190

0

50

100

150

200

250

300

350

(b)

Figure 7.9 Accuracy of model fit to measured data for (a) Ankle spring and (b) Main spring.

7.1 The Robot 117

0 20 40 60 80 100 120 140 160

0

500

1000

1500

Figure 7.10 Fracture limit for the springs in compression.

Figure 7.11 Repeatability experiments. Red and yellow lines represent the Ankle springs,
the other colours the Main springs. One colour for each spring that was tested (10 Main
springs and 2 Ankle springs).

7.2 Kinematic Model 118

7.2 Kinematic Model

This section describes Skippy’s kinematic model depicted in Figure 7.12 and how all the
variables are defined. A more detailed kinematic diagram is present in Appendix B Figure B.2.
The diagram presented in Figure 7.12, also called ’old model’, slightly differs from the one
shown in Figure B.2, called ’new model’. In the new model the follower and the lower part
of the lever are shown at right angles to the horizontal part of the torso while in the old model
they are shown at right angles to the tilted portion of the torso. This discrepancy affects the
definitions of q6, q7 and q8, but not q67. There are also differences in the positions of some
of the body coordinate frames: in the new model, F4 is at P2, F5 is at P1, and F6 is at P0. In
this chapter all the kinematic calculations are done with the old model.

Skippy’s motion can be described by five independent variables q1, q2, q4, q5 and q10.
This section describes how the other dependent variables are derived. q3 represents the
motion of the rolling contact at the ground, and it is defined as q3 =−rtoeq4. Considering
the triangle P0-P5-P6 in Figure 7.12, we can observe that P0-P5 and P0-P6 are constant, and
P5-P6 varies with q10; this kinematic triangle allows us to derive q9 the angle between the
torso and the rocker and consequently q7 the angle between the torso and the lever. The 4-bar
mechanism can be modelled as two kinematic triangles P0-P3-P4 and P0-P1-P3; having q7

as an input, we can solve the first triangle for q8 the torso follower angle. Solving the other
triangle allows us to derive q6, the angle between the leg and the lever and consequently
q67. The Skippy team developed the Matlab functions to calculate Skippy’s kinematics (see
Appendix B), and my personal contribution consisted of integrating these functions into
Skippy’s control system.

7.2.1 Model Mapping

As described in Section 6.1.1, it is necessary to explicitly express the motion constraints
to apply the general balance controller. It is then necessary to define the matrix G and the
vector g.

GT =


1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 −rtoe 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 α β γ θ 1



7.2 Kinematic Model 119

H ip e n d -s top d e t a ils

Figure 7.12 Top diagram showing a simplified Skippy’s kinematic model in its open-loop
zero position (q = 0), and details of the hip end stop (4-bar mechanism) and ankle spring. [1].
Skippy’s kinematic and dynamic parameters are reported in Tables 7.3 and 7.4.

7.2 Kinematic Model 120

Name Kinematic Parameter Value
rtoe radius of toe 0.00
d2toe length of foot (body 4) 0.245
A3 angle of 4-bar segment AB within torso 0.3699
A5 lever angle 0.5236
bar4_a length of 4-bar segment (in torso) 0.0536
bar4_b length of 4-bar segment (in lever, body 6) 0.1353
bar4_c length of 4-bar segment (in leg) 0.0553
bar4_d length of 4-bar segment (follower, body 8) 0.1309
bar4_phi CD offset angle at motion limits 0.1301
bar4_Bmin 4-bar angle at maximum stretch 0.3699
bar4_Bmax 4-bar angle at maximum fold 1.9407
p0x x coordinate of P0 (lever joint in torso) 0
p0y y coordinate of P0 (lever joint in torso) 0
p1x x coordinate of P1 (lever joint in leg) relative to P0 0
p1y y coordinate of P1 (lever joint in leg) relative to P0 -0.1353
p2x x coordinate of P2 (ankle) relative to P1 0.519
p2y y coordinate of P2 (ankle) relative to P1 0.039
p3x x coordinate of P3 (follower joint in torso) relative to P0 -0.050
p3y y coordiante of P4 (follower joint in torso) relative to P0 0.019
p4x x coordinate of P4 (follower joint in leg) relative to P1 0.0265
p4y y coordiante of P4 (follower joint in leg) relative to P1 0.0485
p5x x coordinate of P5 (coupler) relative to P0 -0.0525
p5y y coordinate of P5 (coupler) relative to P0 0.0909
p6x x coordinate of P6 (rocker joint in torso) relative to P0 0.42
p6y y coordinate of P6 (rocker joint in torso) relative to P0 0.080
p7x x coordinate of P7 (crossbar) relative to P0 0.621
p7y y coordinate of P7 (crossbar) relative to P0 0.01
p8x x coordinate of P8 (ankle spring joint in leg) relative to P2, adjustable -0.0327
p8y y coordinate of P8 (ankle spring joint in leg) relative to P2, adjustable 0.023
p9x x coordinate of P9 (ankle spring joint in foot) relative to P2, adjustable -0.0647
p9y y coordinate of P9 (ankle spring joint in foot) relative to P2, adjustable -0.1775

Table 7.3 List of kinematic parameters of Skippy’s mechanism of Figures 7.12 and B.2.
Lengths are in metres and angles in radians. See Table 7.2 for spring parameters.

7.2 Kinematic Model 121

Name Dynamic Parameter Value
foot_m mass of foot (body 4) 0.520
foot_cx foot centre of mass x coordinate -0.010
foot_cy foot centre of mass y coordinate 0.138
foot_rog foot radius of gyration 0.028
leg_m mass of leg (body 5) 0.615
leg_cx leg centre of mass x coordinate -0.410
leg_cy leg centre of mass y coordinate -0.021
leg_rog leg radius of gyration 0.195
lever_m mass of lever (body 6) 0.367
lever_cx lever centre of mass x coordinate -0.029
lever_cy lever centre of mass y coordinate 0.140
lever_rog lever radius of gyration 0.084
torso_m mass of torso+, rocker, nut (bodies 7, 9, 10) 3.970
torso_cx torso+ centre of mass x coordinate 0.371
torso_cy torso+ centre of mass y coordinate 0.040
torso_rog torso radius of gyration 0.210

Table 7.4 List of dynamic parameters of Skippy’s mechanism of Figures 7.12 and B.2.
Lengths are in metres, masses in kilograms and angles in radians. The symbol ‘torso+’ means
the torso plus the crossbar, treated as a single rigid body.

gT =
[
0 0 0 0 0 α̇ q̇10 β̇ q̇10 γ̇ q̇10 θ̇ q̇10 0

]
where α , β , γ and θ are configuration-dependent functions relating dependent joint velocities
to q̇10. Appendix B shows the Matlab functions used to calculate matrix G and vector g.

The Ankle spring has been designed to be stiff enough so that it almost doesn’t compress
while balancing, allowing for a simplifying assumption q̇5 = 0. Thanks to the regressive
nature of the spring (more details in Section 7.1.10), the torque it generates while the
robot balances can be neglected by the balance controller. This simplification proves the
robustness of the balance controller but, at the same time, limits the motion command for
the actuated joint. Fast movements of the actuated joint make the spring oscillate, reducing
the tracking performance of the robot. Furthermore, the definition of q1 = q2 = 0 always,
implies q̇1 = q̇2 = 0 always. As a consequence, the number of independent variables required
to describe Skippy’s motion decreases to two and the matrix G can be simplified to G by
removing the first, second and fifth columns.

GT
=

[
0 0 −rtoe 1 0 0 0 0 0 0
0 0 0 0 0 α β γ θ 1

]
(7.1)

7.3 Centre of Mass Observer 122

As described in Chapter 6.1, it is necessary to explicitly express the motion constraints
to apply the general balance controller of Chapter 5. The two independent variables used
to balance Skippy’s leg are q4 and q10. q4 = y1 is the passive joint used as a reference for
balancing, while q10 = y2 is the actuated joint used to balance the robot, and y = [y1 y2]

T.
Defining the equation of motion of the unconstrained robot as

Huq̈+Cu = τu (7.2)

where Hu is the joint-space inertia matrix, Cu is the bias vector containing Coriolis, centrifugal
and gravitational terms, and τu = [0, ...,0,τ10]

T the vector of joint force variables. then the
equation of motion of the constrained robot is

Hÿ+C = τ (7.3)

where
H = GTHuG , C = GT

(Cu +Hug) and τ = GT
τu = [0 τ10]

T (7.4)

7.3 Centre of Mass Observer

The balance controller is very sensitive in the estimation of the position of the CoM [91]. For
this reason, an observer has been proposed in Chapter 4 to compensate for inaccuracies in
the estimation of the vertical through the IMU. However, the observer defined in Chapter 4
cannot be applied to Skippy. The reason lies in the definition of the observer, where it is
assumed that the position of the CoM is proportional only to the robot’s angle with respect to
the vertical, assuming that the robot is perfectly balanced when upright. This assumption is
not valid with this configuration of Skippy because the angle used for balancing is y1 ̸= 0
in any possible balanced configuration; furthermore, the position of the CoM is no longer
only proportional to such angle, but it also depends on q5 and q67. A new observer is then
proposed, intending to compensate for sensors’ inaccuracies in estimating the x component
of CoM position.

Given y1 and y2 as the independent variables used by the balance controller, from previous
chapters, we have that the angular momentum of the robot about the support point is

L = H11ẏ1 +H12ẏ2 (7.5)

7.3 Centre of Mass Observer 123

0 1 2 3 4 5 6 7 8 9

-5

0

5

10
10

-3

Figure 7.13 ĉx is the measured position of the centre of mass, cxo is the offset error, and cx is
the corrected value.

and since no external force is applied to the robot, the derivative of the angular momentum
of the robot balancing on a fixed point is

L̇ =−mgcx . (7.6)

We now have two ways to define L̇ which are Equation 7.6 and the derivative of Equation 7.5

L̇ =
dL
dt

. (7.7)

Let us define
cx = ĉx − cxo (7.8)

where ĉx is the position of the CoM obtained with the sensors’ data, and cxo is the unknown
error in such estimate, which varies so slowly that we can approximate ċxo = 0. The value of
the error can be obtained by combining the two definitions of L̇ and filtering the output

cxo = LPF
(

ĉx +
1

mg
dL
dt

)
(7.9)

where ‘LPF’ is a Low Pass Filter with a cutoff frequency of 1rad/s. The expression ĉx − cxo

is used in place of cx by the balance controller in this chapter.

7.4 Experiment 124

6 6.1 6.2 6.3 6.4 6.5 6.6 6.7

-20

-10

0

10

20

-1

0

1

10
-3

Figure 7.14 Velocity of the main motor sticks to zero when cx reaches to zero.

Figure 7.13 shows how the CoM observer works throughout the experiment, where the
robot is manually placed in a balanced configuration and is commanded to balance without
moving the torso. The robot starts balancing at t = 0s; simultaneously, the observer estimates
the offset error, allowing the robot to align the updated CoM position with the origin, cx = 0.
The moment cx is aligned with the vertical, the balance controller asks for minimal variation
in q̇10 since the robot is in a balanced configuration. Such a small command causes the
motor stiction problem, as shown in Figure 7.14, where the motor is still for about 0.1s.
Consequently, the robot starts going off balance until the balance controller asks for a
sufficiently high command, making the robot oscillate, making it impossible to align cx with
the vertical permanently. Although the observer is designed to compensate fully for the CoM
estimation error, it compensates only for half of the error. The exact reason for this could not
be found. Still, the author believes the cause can be researched in a combination of motor
stiction and not perfectly precise dynamic and kinematic parameters due to manufacturing
tolerance and physical assembly.

7.4 Experiment

The experiment validates Skippy as a balancing and hopping machine. The balance controller
is the same as in Chapter 5, the four poles are λ1 =−1/Tc, λ2 = λ3 =−4.5, and λ4 =−6,
where Tc is the robot’s constant of toppling in the current configuration. The two zeros are

7.4 Experiment 125

Figure 7.15 Hopping experiment.

7.4 Experiment 126

2 3 4 5 6 7 8 9

-10

-5

0

5

10

15

Figure 7.16 Voltage profile through the experiment. White background indicates when the
voltage is the output of the control system; pink background when it is the feed forward
signal for hopping.

5.05 5.1 5.15 5.2 5.25

0

5

10

15

20

Figure 7.17 Feed forward voltage profile for hopping. The voltage goes to zero immediately
after this signal.

7.4 Experiment 127

0 2 4 6 8 10 12

30

40

50

60

Figure 7.18 Position of joint q10 while balancing and hopping.

4.5 5 5.5 6

30

40

50

60

Figure 7.19 Position of joint q10 while balancing and hopping.

7.4 Experiment 128

set to cancel λ2 and λ3. The command signal is a constant value for the actuated joint 10,
qd = 0.048. The experiment, shown in Figure 7.15, starts with the operator manually placing
Skippy in a balanced configuration. Then, the balance controller is turned on (together with
the CoM observer), and the robot starts balancing. Then, the robot opens the Leg angle
to the desired position (the command signal is a constant position for q10). Once reached
such position, the balance controller is switched off, and an open loop voltage signal (see
Figures 7.16 and 7.17) is applied to the Main motor. The voltage profile is an optimised signal
allowing the robot to hop with the desired velocity (vertical and horizontal components) of
the centre of mass. The signal’s optimisation strategy is out of this thesis’s scope and can be
found in [1]. The desired vertical velocity of the CoM is 1m/s, corresponding to a vertical
hop of 5cm. In this initial experiment, the balance controller is switched on again after a
time interval determined experimentally since no contact sensor is placed in the foot to detect
landing. Once turned on again, the balance controller allows the robot to recover the balance
regardless of the disturbances caused by the small hop.

Figures 7.18 and 7.19 show the position of joint q10 throughout the experiment. The
figure is characterized by three different background colours, each representing a state of the
control system: white, the robot is actively balancing thanks to the balance controller; red,
the feed-forward signal computed apriori off-line is applied to the motor to make the robot
hop, and the balance controller is turned off; yellow, the robot is flying, and zero Volts are
applied to the motor.

Unlike the robots used in Chapters 4, 5 and 6 where there is a configuration where the
structure of the robot itself can compensate for gravity, Skippy, in its 2D configuration,
cannot do so. Consequently, it is forced to always actively compensate for gravity while
balancing but cannot balance with minimal movements of the actuated joint. This behaviour
has multiple causes, the most significant being the main motor’s stiction and the Ankle
spring’s presence. Once the robot reaches a balanced position, the balance controller asks for
a minimal variation in the acceleration of the actuated joint to keep the balance. This variation
corresponds to such a small velocity command that the motor doesn’t move, as the torque
generated by the motor is not enough to overcome the static friction. As a consequence,
the robot starts going off balance until a sufficiently high-velocity command is given. This
behaviour causes sudden changes in the motor velocity, which excites the spring at the ankle,
requiring an additional movement of the actuated joint to compensate for it. The effects
of this compensation can be seen in Figure 7.18, where q10 continuously oscillates and in
Figure 7.13 where the robot’s CoM moves according to the motion of q10.

7.5 Conclusion 129

7.5 Conclusion

This chapter presented the first successful experimental demonstration of the balancing and
hopping machine called Skippy in its 2D configuration. The experiment showed Skippy
balancing, hopping, landing and balancing again without any external intervention from the
operator. The results of the experiment proved the potentialities of Skippy and its successful
design, which can be successfully used for both balancing and hopping experiments. Further-
more, this chapter demonstrated that the control strategy adopted in the previous chapters
can be used for more complex machines, even on a 16-bit micro-controller running at 1 kHz,
proving even more the light weight of the control algorithm.

Chapter 8

Conclusion

This thesis presented Skippy, a fully autonomous balancing and hopping machine. It gives the
reader a better understanding of the building process of a balancing and hopping robot and
the strategies adopted to make it reliable and robust. Starting from Chapter 3, purpose-built
machines are built and used to test and validate both hardware (sensors) and software (balance
controllers).

Chapter 3 analyses the aspects of testing the sensorimotor system of a dynamic robot.
The procedure depicted in this chapter gives the reader a better understanding of the sensors’
limitations and malfunctions. More specifically, it highlights the temporary malfunction of
the absolute encoder acquisition system in case of mechanical shocks due to high acceleration
impacts. It also proves the presence of a drift in the attitude estimation of Skippy’s IMU
when subject to a continuous low acceleration motion.

Chapter 4 presents Featherstone’s balance controller and the application of its simplified
version on a real robot. The balancing machine behaves as an inverted reaction wheel
pendulum with a floating base. It is the first time high performance is achieved on a floating
base balancing machine estimating the vertical with an IMU.

Chapter 5 describes the first successful implementation of Featherstone’s general balance
controller on a floating base inverted double pendulum. The experimental results shows the
controller’s capability to precisely track various signals (i.e. fast and slow ramps, sine waves)
while being able to compensate for unexpected external disturbances, such as the back foot
slipping or the robot being hit by a tennis ball. Furthermore, the robot could stand up and
balance itself indefinitely without falling over, proving the reliability of both hardware and
software.

Chapter 6 extends Featherstone’s balance controller to the case of robots that balance on
rounded feet or wheels, replacing Featherstone’s point-foot assumption with a circular-foot
assumption. It presents the new theory for the case of a robot balancing on a flat horizontal

131

surface. It validates it on an underactuated inverted double pendulum both in simulation and
on a real robot. The controller proved its effectiveness in simulation for a Segway-like robot,
making the robot balance while simultaneously travelling at a desired speed. The controller
is further extended to the case of a robot balancing on a slope, and it is then validated in
simulation.

Chapter 7 introduces Skippy in its final version. Although the robot is complete, in
this chapter, its motion is constrained in 2D with an extension of the spring-loaded foot
(contact point with the ground). The chapter presents all Skippy’s components and explains
how the robot’s control system models them. This chapter is the first implementation of
Featherstone’s balance controller on a robot balancing on a springy leg. An experiment
proves the effectiveness and the robustness of both the robot and balance controller, which is
not aware of the presence of the spring. The robot can balance, hop, land and balance again
without any external intervention.

This work leaves as a heritage a reliable and robust robot called Skippy. All the robots
build in this thesis have been subject to multiple falls and crashes. Nevertheless, the robust
design of Skippy (and its predecessor balancing machines) never experienced fatal damages
or malfunctioning during all the tests performed. The mechanical structure combined with
the shock absorbing foam carefully placed on strategic points, protected all the electronic
components, making possible to use the same Brain and encoders through all the experiments.
Consequently, Skippy proved to be an adequate machine for testing and developing dynamic
and athletic manoeuvres, which can end up in crash landings, not being afraid of breaking
the robot.

The directions of future works are many, and here some ideas are proposed.

• Experimental validation of a robot balancing on a rolling contact on a slope.

• Continuous hopping in 2D.

• Making a somersault in 2D.

• Balancing and hopping in 2D on a rolling contact.

• Integration of series elastic elements in the main actuation system.

• Implementation and experimental validation of a 3D balance controller on a robot that
makes contact with the ground both on a point foot and on a rolling contact.

• Balancing and hopping in 3D.

References

[1] A. E. Gkikakis, Mechanism and Behaviour Co-optimisation of High Performance
Mobile Robots. PhD thesis, Department of Informatics, Bioengineering, Robotics and
Systems Engineering (DIBRIS), University of Genoa, 2021. doi: 10.15167/gkikakis-
antoniosemmanouil_phd2021-04-21.

[2] A. I. Roose, S. Yahya, and H. Al-Rizzo, “Fuzzy-logic control of an inverted pendulum
on a cart,” Computers & Electrical Engineering, vol. 61, pp. 31–47, 2017.

[3] J. Moreno-Valenzuela, C. Aguilar-Avelar, S. A. Puga-Guzmán, and V. Santibáñez,
“Adaptive neural network control for the trajectory tracking of the furuta pendulum,”
IEEE Transactions on Cybernetics, vol. 46, no. 12, pp. 3439–3452, 2016.

[4] J. J. M. Driessen, A. E. Gkikakis, R. Featherstone, and B. R. P. Singh, “Experi-
mental demonstration of high-performance robotic balancing,” in 2019 International
Conference on Robotics and Automation (ICRA), pp. 9459–9465, 2019.

[5] F. Allione, A. E. Gkikakis, and R. Featherstone, “Experimental demonstration of a
general balancing controller on an untethered planar inverted double pendulum,” in
2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pp. 8292–8297, 2022.

[6] M. Azad et al., Balancing and hopping motion control algorithms for an under-
actuated robot. PhD thesis, Australian National University, 2014.

[7] C. Semini, N. G. Tsagarakis, E. Guglielmino, and D. G. Caldwell, “Design and exper-
imental evaluation of the hydraulically actuated prototype leg of the HyQ robot,” in
2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3640–
3645, 2010.

[8] D. Pucci, F. Romano, S. Traversaro, and F. Nori, “Highly dynamic balancing via
force control,” in 2016 IEEE-RAS 16th International Conference on Humanoid Robots
(Humanoids), pp. 141–141, 2016.

[9] A. Suebsomran, “Balancing control of bicycle robot,” in 2012 IEEE International
Conference on Cyber Technology in Automation, Control, and Intelligent Systems
(CYBER), pp. 69–73, 2012.

[10] B. Katz, J. D. Carlo, and S. Kim, “Mini Cheetah: A platform for pushing the limits
of dynamic quadruped control,” in 2019 International Conference on Robotics and
Automation (ICRA), pp. 6295–6301, 2019.

References 133

[11] M. Hutter, C. Gehring, D. Jud, A. Lauber, C. D. Bellicoso, V. Tsounis, J. Hwangbo,
K. Bodie, P. Fankhauser, M. Bloesch, R. Diethelm, S. Bachmann, A. Melzer, and
M. Hoepflinger, “Anymal - a highly mobile and dynamic quadrupedal robot,” in
2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pp. 38–44, 2016.

[12] C. Semini, N. G. Tsagarakis, E. Guglielmino, M. Focchi, F. Cannella, and D. G.
Caldwell, “Design of HyQ – a hydraulically and electrically actuated quadruped robot,”
Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems
and Control Engineering, vol. 225, no. 6, pp. 831–849, 2011.

[13] ANYbotics, “ANYmal.” https://www.anybotics.com/robotics/anymal/, accessed Sep.
2023.

[14] Boston Dynamics, “Spot.” https://www.bostondynamics.com/products/spot, accessed
Mar. 2023.

[15] Boston Dynamics, “Atlas.” https://www.bostondynamics.com/atlas, accessed Mar.
2023.

[16] Agility Robotics, “Digit.” https://agilityrobotics.com/robots, accessed Mar. 2023.

[17] TRoy Featherstone, “The Skippy Project.” http://royfeatherstone.org/skippy/, accessed
Sep. 2023.

[18] R. Featherstone, “A simple model of balancing in the plane and a simple preview
balance controller,” The International Journal of Robotics Research, vol. 36, no. 13-14,
pp. 1489–1507, 2017.

[19] B. R. P. Singh, Angular Momentum based Balancing Control and Shock-proof Design
of Legged Robots. PhD thesis, University of Pisa, 2021.

[20] J. D. Gamba Camacho, Hopping, Landing, and Balancing with Springs. PhD the-
sis, Department of Informatics, Bioengineering, Robotics and Systems Engineering
(DIBRIS), University of Genoa, 2022.

[21] C. Semini, V. Barasuol, M. Focchi, C. Boelens, M. Emara, S. Casella, O. Villarreal,
R. Orsolino, G. Fink, S. Fahmi, et al., “Brief introduction to the quadruped robot
HyQReal,” Istituto di Robotica e Macchine Intelligenti (I-RIM), 2019.

[22] Unitree, “Go1.” https://www.unitree.com/en/go1, accessed Mar. 2023.

[23] M. Kamedula, N. Kashiri, and N. G. Tsagarakis, “On the kinematics of wheeled motion
control of a hybrid wheeled-legged centauro robot,” in 2018 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pp. 2426–2433, 2018.

[24] Y. de Viragh, M. Bjelonic, C. D. Bellicoso, F. Jenelten, and M. Hutter, “Trajectory
optimization for wheeled-legged quadrupedal robots using linearized zmp constraints,”
IEEE Robotics and Automation Letters, vol. 4, no. 2, pp. 1633–1640, 2019.

References 134

[25] L. Bruzzone and P. Fanghella, “Mantis hybrid leg-wheel robot: Stability analysis
and motion law synthesis for step climbing,” in 2014 IEEE/ASME 10th International
Conference on Mechatronic and Embedded Systems and Applications (MESA), pp. 1–6,
2014.

[26] H. Wang, H. Yu, J. Liu, L. He, Q. Li, and N. Zhao, “Design and analysis of a hybrid
two-wheel-hopping robot,” in Proceedings of the 2013 International Conference on
Advanced Mechatronic Systems, pp. 363–368, 2013.

[27] J. Zhao, T. Zhao, N. Xi, M. W. Mutka, and L. Xiao, “MSU Tailbot: Controlling
aerial maneuver of a miniature-tailed jumping robot,” IEEE/ASME Transactions on
Mechatronics, vol. 20, no. 6, pp. 2903–2914, 2015.

[28] F. Negrello, M. Garabini, M. Catalano, P. Kryczka, W. Choi, D. Caldwell, A. Bicchi,
and N. Tsagarakis, “WALK-MAN humanoid lower body design optimization for
enhanced physical performance,” in 2016 IEEE International Conference on Robotics
and Automation (ICRA), pp. 1817–1824, 2016.

[29] O. Stasse, T. Flayols, R. Budhiraja, K. Giraud-Esclasse, J. Carpentier, J. Mirabel,
A. Del Prete, P. Souères, N. Mansard, F. Lamiraux, J.-P. Laumond, L. Marchionni,
H. Tome, and F. Ferro, “TALOS: A new humanoid research platform targeted for in-
dustrial applications,” in 2017 IEEE-RAS 17th International Conference on Humanoid
Robotics (Humanoids), pp. 689–695, 2017.

[30] M. H. Raibert, Legged robots that balance. MIT press, 1986.

[31] N. Carlési and A. Chemori, “Nonlinear model predictive running control of kangaroo
robot: A one-leg planar underactuated hopping robot,” in 2010 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pp. 3634–3639, 2010.

[32] G. Zuo, Y. Liu, and X. Wang, “Design of hopping mechanism for a kangaroo-bionic
robot,” in 2016 12th World Congress on Intelligent Control and Automation (WCICA),
pp. 3312–3317, 2016.

[33] J. Zhang, G. Song, Y. Li, G. Qiao, A. Song, and A. Wang, “A bio-inspired jumping
robot: Modeling, simulation, design, and experimental results,” Mechatronics, vol. 23,
p. 1123–1140, 12 2013.

[34] J. Zhang, G. Song, Z. Li, G. Qiao, H. Sun, and A. Song, “Self-righting, steering
and takeoff angle adjusting for a jumping robot,” in 2012 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pp. 2089–2094, 2012.

[35] S. Kajita, F. Kanehiro, K. Kaneko, K. Yokoi, and H. Hirukawa, “The 3D linear
inverted pendulum mode: a simple modeling for a biped walking pattern generation,”
in Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and
Systems, vol. 1, pp. 239–246, 2001.

[36] G. Yuntao, D. Gang, W. Ning, and Z. Dongxia, “The design and realization of a
rotary inverted pendulum based on stm32,” in 2015 International Conference on
Identification, Information, and Knowledge in the Internet of Things (IIKI), pp. 185–
188, 2015.

References 135

[37] I. Siradjuddin, Z. Amalia, B. Setiawan, R. P. Wicaksono, and E. Yudaningtyas, “Sta-
bilising a cart inverted pendulum system using pole placement control method,” in
2017 15th International Conference on Quality in Research (QiR) : International
Symposium on Electrical and Computer Engineering, pp. 197–203, 2017.

[38] M. D. Ratolikar and R. P. Kumar, “Neural network control of an inverted pendulum
on a two DoF cart moving in the vertical plane,” in 2021 6th International Conference
on Robotics and Automation Engineering (ICRAE), pp. 84–88, 2021.

[39] N. Patel and A. Borkar, “Hybrid control design for swing up and stabilization of
cart pendulum system,” in 2017 International Conference on Intelligent Computing,
Instrumentation and Control Technologies (ICICICT), pp. 1051–1057, 2017.

[40] G. Sainzaya, F.-N. Yu, T.-L. Hsieh, and C.-Y. Yang, “LQR control with refined pid to
balance rotary inverted pendulum with time-varying uncertainty,” in 2017 International
Conference on Fuzzy Theory and Its Applications (iFUZZY), pp. 1–6, 2017.

[41] E. Susanto, B. Rahmat, and M. Ishitobi, “Stabilization of rotary inverted pendulum
using proportional derivative and fuzzy controls,” in 2022 9th International Conference
on Information Technology, Computer, and Electrical Engineering (ICITACEE), pp. 34–
37, 2022.

[42] S.-H. Lee and A. Goswami, “Reaction mass pendulum (rmp): An explicit model
for centroidal angular momentum of humanoid robots,” in Proceedings 2007 IEEE
International Conference on Robotics and Automation, pp. 4667–4672, 2007.

[43] L. Chi-Yen, Y. Shuo, B. Benjamin, and M. Zachary, “Enhanced balance for legged
robots using reaction wheels,” in 2023 International Conference on Robotics and
Automation (ICRA), 2023.

[44] C. Carignan and D. Akin, “The reaction stabilization of on-orbit robots,” IEEE Control
Systems Magazine, vol. 20, no. 6, pp. 19–33, 2000.

[45] A. M. Oluwatosin, Y. Hamam, and K. Djouani, “Attitude control of a cubesat in a
circular orbit using reaction wheels,” in 2013 Africon, pp. 1–8, 2013.

[46] M. W. Spong, P. Corke, and R. Lozano, “Nonlinear control of the reaction wheel
pendulum,” Automatica, vol. 37, no. 11, pp. 1845–1851, 2001.

[47] F. Jepsen, A. Soborg, A. R. Pedersen, and Z. Yang, “Development and control of an
inverted pendulum driven by a reaction wheel,” in 2009 International Conference on
Mechatronics and Automation, pp. 2829–2834, 2009.

[48] M. Gajamohan, M. Muehlebach, T. Widmer, and R. D’Andrea, “The Cubli: A reaction
wheel based 3D inverted pendulum,” in 2013 European Control Conference (ECC),
pp. 268–274, 2013.

[49] F. Xue, Z. Hou, and H. Deng, “Balance control for an acrobot,” in 2011 Chinese
Control and Decision Conference (CCDC), pp. 3426–3429, 2011.

References 136

[50] M. Azad and R. Featherstone, “Balancing control algorithm for a 3D under-actuated
robot,” in 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems,
pp. 3233–3238, 2014.

[51] S. Caux, E. Mateo, and R. Zapata, “Balance of biped robots: special double-inverted
pendulum,” in SMC’98 Conference Proceedings. 1998 IEEE International Conference
on Systems, Man, and Cybernetics (Cat. No.98CH36218), vol. 4, pp. 3691–3696,
1998.

[52] M. Spong and D. Block, “The pendubot: a mechatronic system for control research and
education,” in Proceedings of 1995 34th IEEE Conference on Decision and Control,
vol. 1, pp. 555–556 vol.1, 1995.

[53] L. Bai, W.-j. Ge, X.-h. Chen, and X.-y. Meng, “Hopping capabilities of a bio-inspired
and mininally actuated hopping robot,” in 2011 International Conference on Electron-
ics, Communications and Control (ICECC), pp. 1485–1489, 2011.

[54] V. Zaitsev, O. Gvirsman, U. Ben Hanan, A. Weiss, A. Ayali, and G. Kosa, “Locust-
inspired miniature jumping robot,” in 2015 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pp. 553–558, 2015.

[55] U. Scarfogliero, C. Stefanini, and P. Dario, “Design and development of the long-
jumping "grillo" mini robot,” in Proceedings 2007 IEEE International conference on
robotics and automation, pp. 467–472, IEEE, 2007.

[56] M. Noh, S.-W. Kim, S. An, J.-S. Koh, and K.-J. Cho, “Flea-inspired catapult mecha-
nism for miniature jumping robots,” IEEE Transactions on Robotics, vol. 28, no. 5,
pp. 1007–1018, 2012.

[57] C. Zhang, W. Zou, L. Ma, and Z. Wang, “Biologically inspired jumping robots: A
comprehensive review,” Robotics and Autonomous Systems, vol. 124, p. 103362, 2020.

[58] J. Zhao, J. Xu, B. Gao, N. Xi, F. J. Cintrón, M. W. Mutka, and L. Xiao, “MSU Jumper:
A single-motor-actuated miniature steerable jumping robot,” IEEE Transactions on
Robotics, vol. 29, no. 3, pp. 602–614, 2013.

[59] M. Berkemeier and R. Fearing, “Sliding and hopping gaits for the underactuated
acrobot,” IEEE Transactions on Robotics and Automation, vol. 14, no. 4, pp. 629–634,
1998.

[60] R. Blickhan, “The spring-mass model for running and hopping,” Journal of Biome-
chanics, vol. 22, no. 11, pp. 1217–1227, 1989.

[61] T. A. McMahon and G. C. Cheng, “The mechanics of running: How does stiffness
couple with speed?,” Journal of Biomechanics, vol. 23, pp. 65–78, 1990. International
Society of Biomechanics.

[62] K. Harbick and G. Sukhatme, “Controlling hopping height of a pneumatic monopod,”
in Proceedings 2002 IEEE International Conference on Robotics and Automation
(Cat. No.02CH37292), vol. 4, pp. 3998–4003 vol.4, 2002.

References 137

[63] Z. Batts, J. Kim, and K. Yamane, “Untethered one-legged hopping in 3D using linear
elastic actuator in parallel (leap),” in 2016 International Symposium on Experimental
Robotics (D. Kulić, Y. Nakamura, O. Khatib, and G. Venture, eds.), (Cham), pp. 103–
112, Springer International Publishing, 2017.

[64] P. Terry and K. Byl, “Com control for underactuated 2D hopping robots with series-
elastic actuation via higher order partial feedback linearization,” in 2015 54th IEEE
Conference on Decision and Control (CDC), pp. 7795–7801, 2015.

[65] S. Giewont and F. Sahin, “Delta-Quad: An omnidirectional quadruped implementation
using parallel jointed leg architecture,” in 2017 12th System of Systems Engineering
Conference (SoSE), pp. 1–6, 2017.

[66] D. J. Blackman, J. V. Nicholson, C. Ordonez, B. D. Miller, and J. E. Clark, “Gait
development on a direct drive , quadrupedal robot,” in Unmanned Systems Technology
XVIII (R. E. Karlsen, D. W. Gage, C. M. Shoemaker, and G. R. Gerhart, eds.), vol. 9837,
p. 98370I, International Society for Optics and Photonics, SPIE, 2016.

[67] D. J. Blackman, J. V. Nicholson, J. L. Pusey, M. P. Austin, C. Young, J. M. Brown,
and J. E. Clark, “Leg design for running and jumping dynamics,” in 2017 IEEE
International Conference on Robotics and Biomimetics (ROBIO), pp. 2617–2623,
2017.

[68] M. H. Raibert, J. H. Benjamin Brown, and M. Chepponis, “Experiments in balance
with a 3D one-legged hopping machine,” The International Journal of Robotics
Research, vol. 3, no. 2, pp. 75–92, 1984.

[69] Y. Nakata, A. Ide, Y. Nakamura, K. Hirata, and H. Ishiguro, “Hopping of a monopedal
robot with a biarticular muscle driven by electromagnetic linear actuators,” in 2012
IEEE International Conference on Robotics and Automation, pp. 3153–3160, 2012.

[70] S. Ha, S. Coros, A. Alspach, J. Kim, and K. Yamane, “Task-based limb optimization
for legged robots,” in 2016 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pp. 2062–2068, 2016.

[71] D. W. Haldane, J. K. Yim, and R. S. Fearing, “Repetitive extreme-acceleration (14-
g) spatial jumping with Salto-1P,” in 2017 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pp. 3345–3351, 2017.

[72] D. W. Haldane, M. M. Plecnik, J. K. Yim, and R. S. Fearing, “Robotic vertical
jumping agility via series-elastic power modulation,” Science Robotics, vol. 1, no. 1,
p. eaag2048, 2016.

[73] B. Brown and G. Zeglin, “The bow leg hopping robot,” in Proceedings. 1998 IEEE
International Conference on Robotics and Automation, vol. 1, pp. 781–786, IEEE,
1998.

[74] G. Zeglin and B. Brown, “Control of a bow leg hopping robot,” in Proceedings. 1998
IEEE International Conference on Robotics and Automation (Cat. No.98CH36146),
vol. 1, pp. 793–798, 1998.

References 138

[75] T. Tsujita, T. Kitahara, R. Tahara, et al., “Drop test for evaluating effect of cushioning
material and servo gain on parachute landing impact using a small one-legged robot,” in
2017 IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 2474–
2479, 2017.

[76] B. R. P. Singh and R. Featherstone, “Mechanical shock propagation reduction in robot
legs,” IEEE Robotics and Automation Letters, vol. 5, no. 2, pp. 1183–1190, 2020.

[77] S. Zihajehzadeh, D. Loh, T. J. Lee, R. Hoskinson, and E. J. Park, “A cascaded
Kalman filter-based GPS/MEMS-IMU integration for sports applications,” Measure-
ment, vol. 73, pp. 200–210, 2015.

[78] S. Kuindersma, R. Deits, M. Fallon, A. Valenzuela, H. Dai, F. Permenter, T. Koolen,
P. Marion, and R. Tedrake, “Optimization-based locomotion planning, estimation, and
control design for the atlas humanoid robot,” Autonomous Robots, vol. 40, 07 2015.

[79] J. Liang, H. Duan, J. Li, H. Sun, X. Sha, Y. Zhao, and L. Liu, “Accurate estimation
of gait altitude using one wearable IMU sensor,” in 2018 IEEE 1st International
Conference on Micro/Nano Sensors for AI, Healthcare, and Robotics (NSENS), pp. 64–
67, 2018.

[80] K. Abdulrahim, C. Hide, T. Moore, and C. Hill, “Aiding MEMS IMU with building
heading for indoor pedestrian navigation,” in 2010 Ubiquitous Positioning Indoor
Navigation and Location Based Service, pp. 1–6, 2010.

[81] A. Safaeifar and A. Nahvi, “Drift cancellation of an orientation tracker for a virtual
reality head-mounted display,” in 2015 3rd RSI International Conference on Robotics
and Mechatronics (ICROM), pp. 296–301, 2015.

[82] M. Li, Z. Jiang, P. Wang, L. Sun, and S. Sam Ge, “Control of a quadruped robot with
bionic springy legs in trotting gait,” Journal of Bionic Engineering, vol. 11, no. 2,
pp. 188–198, 2014.

[83] S. Zihajehzadeh, D. Loh, M. Lee, R. Hoskinson, and E. Park, “A cascaded two-step
Kalman filter for estimation of human body segment orientation using MEMS-IMU,”
in 2014 36th Annual International Conference of the IEEE Engineering in Medicine
and Biology Society, pp. 6270–6273, 2014.

[84] T. Tan, Z. A. Strout, H. Xia, M. Orban, and P. B. Shull, “Magnetometer-free, IMU-
based foot progression angle estimation for real-life walking conditions,” IEEE Trans-
actions on Neural Systems and Rehabilitation Engineering, vol. 29, pp. 282–289,
2021.

[85] S. Cardarelli, A. Mengarelli, A. Tigrini, A. Strazza, F. Di Nardo, S. Fioretti, and
F. Verdini, “Single IMU displacement and orientation estimation of human center of
mass: A magnetometer-free approach,” IEEE Transactions on Instrumentation and
Measurement, vol. 69, no. 8, pp. 5629–5639, 2020.

[86] D. Yang, J. Huang, X. Tu, G. Ding, T. Shen, and X. Xiao, “A wearable activity
recognition device using air-pressure and IMU sensors,” IEEE access, vol. 7, pp. 6611–
6621, 2018.

References 139

[87] W. Qi and A. Aliverti, “A multimodal wearable system for continuous and real-time
breathing pattern monitoring during daily activity,” IEEE Journal of Biomedical and
Health Informatics, vol. 24, no. 8, pp. 2199–2207, 2020.

[88] J. S. Arlotti, W. O. Carroll, Y. Afifi, P. Talegaonkar, L. Albuquerque, J. E. Ball,
H. Chander, A. Petway, et al., “Benefits of IMU-based wearables in sports medicine:
Narrative review,” International Journal of Kinesiology and Sports Science, vol. 10,
no. 1, pp. 36–43, 2022.

[89] S. Kajita, K. Yokoi, M. Saigo, and K. Tanie, “Balancing a humanoid robot using
backdrive concerned torque control and direct angular momentum feedback,” in
Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation
(Cat. No.01CH37164), vol. 4, pp. 3376–3382 vol.4, 2001.

[90] X. Xin, M. Ono, S. Izumi, T. Yamasaki, and K. Zhang, “Angular momentum based
stabilizing control of underactuated multi-link planar robots with last active joint,” in
2018 Annual American Control Conference (ACC), pp. 1939–1944, 2018.

[91] M. Azad and R. Featherstone, “Angular momentum based balance controller for an
under-actuated planar robot,” Autonomous Robots, vol. 40, no. 1, pp. 93–107, 2016.

[92] C. Gonzalez, V. Barasuol, M. Frigerio, R. Featherstone, D. G. Caldwell, and C. Semini,
“Line walking and balancing for legged robots with point feet,” in 2020 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pp. 3649–3656,
2020.

[93] M. Chignoli and P. M. Wensing, “Variational-based optimal control of underactuated
balancing for dynamic quadrupeds,” IEEE Access, vol. 8, pp. 49785–49797, 2020.

[94] M. Bjelonic, C. D. Bellicoso, Y. de Viragh, D. Sako, F. D. Tresoldi, F. Jenelten,
and M. Hutter, “Keep rollin’—whole-body motion control and planning for wheeled
quadrupedal robots,” IEEE Robotics and Automation Letters, vol. 4, no. 2, pp. 2116–
2123, 2019.

[95] E. Vollenweider, M. Bjelonic, V. Klemm, N. Rudin, J. Lee, and M. Hutter, “Advanced
skills through multiple adversarial motion priors in reinforcement learning,” in 2023
IEEE International Conference on Robotics and Automation (ICRA), pp. 5120–5126,
IEEE, 2023.

[96] L. J. Pinto, D.-H. Kim, J. Y. Lee, and C.-S. Han, “Development of a segway robot
for an intelligent transport system,” in 2012 IEEE/SICE International Symposium on
System Integration (SII), pp. 710–715, 2012.

[97] S. Chantarachit, “Development and control segway by LQR adjustable gain,” in 2019
International Conference on Information and Communications Technology (ICOIACT),
pp. 649–653, 2019.

[98] H. Chen, B. Wang, Z. Hong, C. Shen, P. M. Wensing, and W. Zhang, “Underactuated
motion planning and control for jumping with wheeled-bipedal robots,” IEEE Robotics
and Automation Letters, vol. 6, no. 2, pp. 747–754, 2021.

References 140

[99] I. D. Basnayake, T. W. U. Madhushani, and D. H. S. Maithripala, “Intrinsic pid
controller for a segway type mobile robot,” in 2017 IEEE International Conference on
Industrial and Information Systems (ICIIS), pp. 1–6, 2017.

[100] R. Babazadeh, A. G. Khiabani, and H. Azmi, “Optimal control of segway personal
transporter,” in 2016 4th International Conference on Control, Instrumentation, and
Automation (ICCIA), pp. 18–22, 2016.

[101] M. M. Azimi and H. R. Koofigar, “Model predictive control for a two wheeled self
balancing robot,” in 2013 First RSI/ISM International Conference on Robotics and
Mechatronics (ICRoM), pp. 152–157, 2013.

[102] M. Okulski and M. Ławryńczuk, “Development of a model predictive controller for
an unstable heavy self-balancing robot,” in 2018 23rd International Conference on
Methods and Models in Automation and Robotics (MMAR), pp. 503–508, 2018.

[103] T. Lauwers, G. Kantor, and R. Hollis, “A dynamically stable single-wheeled mo-
bile robot with inverse mouse-ball drive,” in Proceedings 2006 IEEE International
Conference on Robotics and Automation, 2006. ICRA 2006., pp. 2884–2889, 2006.

[104] U. Nagarajan, G. Kantor, and R. Hollis, “The ballbot: An omnidirectional balancing
mobile robot,” The International Journal of Robotics Research, vol. 33, no. 6, pp. 917–
930, 2014.

[105] S.-M. Lee and B. S. Park, “Robust control for trajectory tracking and balancing of a
ballbot,” IEEE Access, vol. 8, pp. 159324–159330, 2020.

[106] M. U. Draz, M. S. Ali, M. Majeed, U. Ejaz, and U. Izhar, “Segway electric vehicle,”
in 2012 International Conference of Robotics and Artificial Intelligence, pp. 34–39,
2012.

[107] F. Allione, B. R. P. Singh, A. E. Gkikakis, and R. Featherstone, “Mechanical shock
testing of incremental and absolute position encoders,” in 2021 20th International
Conference on Advanced Robotics (ICAR), pp. 52–57, 2021.

[108] F. Allione, J. D. Gamba, A. E. Gkikakis, R. Featherstone, and D. Caldwell, “Ef-
fects of repetitive low-acceleration impacts on attitude estimation with micro-
electromechanical inertial measurement units,” Frontiers in Robotics and AI, vol. 10,
2023.

[109] RLS, “RLS AksIM-2 absolute encoders.” https://www.rls.si/eng/, accessed Mar. 2023.

[110] Maxon Group, “ENX 16 EASY.” https://www.maxongroup.com/, accessed Mar. 2023.

[111] Misumi, “Aluminum Extrusion 5 Series/slot width 6/20x40mm, Parallel Surfacing.”
https://uk.misumi-ec.com/, accessed Mar. 2023.

[112] A. E. Gkikakis, D. Kanoulas, and R. Featherstone, “Autonomous real time architecture
for high performance mobile robots,” in 2021 IEEE 17th International Conference on
Automation Science and Engineering (CASE), pp. 841–846, 2021.

References 141

[113] Texas Instruments, “Enhanced Quadrature Encoder Pulse (eQEP) Module.”
https://www.ti.com/, accessed Mar. 2023.

[114] International Electrotechnical Commission (IEC), “Environmental testing – Part 2-27:
Tests – Test Ea and guidance: Shock.” International Standard IEC 60068-2-27, ed. 4.0,
2008-2, 2008.

[115] W. Peterson and D. Brown, “Cyclic Codes for Error Detection,” Proc. the IRE, vol. 49,
no. 1, pp. 228–235, 1961.

[116] J. K. Yim, B. R. P. Singh, E. K. Wang, R. Featherstone, and R. S. Fearing, “Precision
robotic leaping and landing using stance-phase balance,” IEEE RA-L, vol. 5, no. 2,
pp. 3422–3429, 2020.

[117] Magnet Schultz, “Proportional Rotary Solenoids Type G DR.” https://www.magnet-
schultz.com/en/rotary-solenoids/proportional-rotary-solenoids-type-g-dr/, accessed
Mar. 2023.

[118] Pololu, “Pololu G2 High-Power Motor Driver 24v21.”
https://www.pololu.com/product/2995, accessed Mar. 2023.

[119] RLS, “RLS AksIM-2 absolute encoders.” https://www.rls.si/eng/, accessed Mar. 2023.

[120] National Instruments, “Controller Single-Board CompactRIO FPGA.”
https://www.ni.com/it-it/support/model.sbrio-9637.html, accessed Mar. 2023.

[121] VECTORNAV, “VECTORNAV Inertial Measurement Unit.”
https://www.vectornav.com/products/detail/vn-100, accessed Mar. 2023.

[122] Lord MicroStrain, “3DMGX5-AR.” https://www.microstrain.com/inertial-
sensors/3dm-gx5-15, accessed Mar. 2023.

[123] Lord MicroStrain, “Desktop Sensing Software.”
https://www.microstrain.com/software/sensorconnect, accessed Mar. 2023.

[124] BOSCH, “Smart Sensor: BNO055.” https://www.bosch-sensortec.com/products/smart-
sensors/bno055/, accessed Mar. 2023.

[125] DFRobot, “Gravity: BNO055+BMP280 intelligent 10DOF AHRS.”
https://www.dfrobot.com/product-1793.html, accessed Mar. 2023.

[126] Adafruit Industries, “BNO055 Absolute Orientation Sensor.”
https://learn.adafruit.com/adafruit-bno055-absolute-orientation-sensor, accessed Mar.
2023.

[127] Arduino, “Arduino Uno Board.” https://store.arduino.cc/products/arduino-uno-rev3,
accessed Mar. 2023.

[128] C. Koga, K. Miyase, and M. Tokui, “Analyzing running form with acceleration sensor,”
in 2020 IEEE International Conference on Consumer Electronics (ICCE), pp. 1–5,
2020.

References 142

[129] A. Bhattacharya, E. McCutcheon, E. Shvartz, and J. Greenleaf, “Body acceleration
distribution and o2 uptake in humans during running and jumping,” Journal of applied
physiology: respiratory, environmental and exercise physiology, vol. 49, pp. 881–7,
12 1980.

[130] R. Featherstone, “A new simple model of balancing in the plane,” in Proc. Int. Symp.
Robotics Research, Sestri Levante, Italy, Sept. 12–15, 2015.

[131] R. Featherstone, “Control of absolute motion while balancing in 2D,” in 2021 20th
International Conference on Advanced Robotics (ICAR), pp. 121–127, 2021.

[132] N. Miyashita, M. Kishikawa, and M. Yamakita, “3D motion control of 2 links (5
D.O.F.) underactuated manipulator named acrobox,” in 2006 American Control Con-
ference, pp. 6 pp.–, 2006.

[133] R. Featherstone, “Quantitative measures of a robot’s physical ability to balance,” The
International Journal of Robotics Research, vol. 35, no. 14, pp. 1681–1696, 2016.

[134] Texas Instruments, “TMS320F28377S.” https://www.ti.com/, accessed Mar. 2022.

[135] F. Allione, R. Featherstone, P. M. Wensing, and D. Caldwell, “Balancing on a rolling
contact,” IEEE Robotics and Automation Letters - Early Access, pp. 1–8, 2023.
DOI: 10.1109/LRA.2023.3326696.

[136] R. Featherstone, Rigid Body Dynamics Algorithms, pp. 39–64. Boston, MA: Springer
US, 2008.

[137] G. Zuo, X. Wang, D. Gong, and Y. Liu, “Dynamic modeling and balance control for
bionic kangaroo robot during stance phase,” in 2016 Chinese Control and Decision
Conference (CCDC), pp. 5154–5157, 2016.

[138] J. Grizzle, C. Moog, and C. Chevallereau, “Nonlinear control of mechanical systems
with an unactuated cyclic variable,” IEEE Transactions on Automatic Control, vol. 50,
no. 5, pp. 559–576, 2005.

[139] C. Semini, V. Barasuol, J. Goldsmith, M. Frigerio, M. Focchi, Y. Gao, and D. G.
Caldwell, “Design of the hydraulically actuated, torque-controlled quadruped robot
HyQ2Max,” IEEE/ASME Transactions on Mechatronics, vol. 22, no. 2, pp. 635–646,
2017.

[140] G. Zeglin, The Bow Leg Hopping Robot. PhD thesis, Carnegie Mellon University
Pittsburgh, Pennsylvania, 1999.

[141] J. J. Driessen, Design of high-performance legged robots: A case study on a hopping
and balancing robot. PhD thesis, Università degli Studi di Genova, 2019.

Appendix A

RWP Dynamic Parameters Estimation

This appendix describes the experimental methodology used to determine the dynamic
parameters required by the Reaction Wheel Pendulum (RWP) balance controller. Such
values are used as a starting point and then manually tuned to compensate for measurement
inaccuracies while doing experiments with the real robot. The dynamic parameters are three
and are the First Moment of Mass, the Time Constant of Toppling and the Angular Velocity
Gain.

A.1 First Moment of Mass

This section presents the procedure used to estimate experimentally the first moment of mass
of Skippy’s Head when configured as a RWP. The first moment of mass, mc, is the product
of the mass of the robot m and the distance of the robot’s centre of mass c with respect to the
rotation axis of the pendulum.

The experimental procedure consists in placing the whole robot on its side, as shown
in Figure A.1, so that it is supported at two points having the same height and at a known
distance d; one of the support point is on a scale. Get the scale reading and call it m2. Then
measure the angle between the dashed line and the horizontal (the dashed line is aligned with
the vertical when the robot balances). The angle θ is obtained as the difference between two
IMU readings when the robot is vertical and lying on its side. The robot is held manually to
obtain the vertical measurement (q1 = 0), and the IMU is read when a spirit level placed on
top of the Head is perfectly horizontal. By exploiting the following equations and knowing

A.2 Time Constant of Toppling 144

Figure A.1 Drawing for the first moment of mass mc.

the angle θ it is possible to get the value of mc.

m1 +m2 = m

d1 +d2 = d

d1m1 = d2m2

(A.1)

The measured physical parameters of the robot used to estimate its first moment of mass are
m2 = 1.75kg, d = 0.29m, and θ = 0.31rad. Then, the first moment of mass obtained after
trigonometric calculations is mc = m2d/cos(θ) = 0.53kgm.

A.2 Time Constant of Toppling

This section presents the procedure used to estimate the Time Constant of Toppling Tc

experimentally of the RWP balancing machine. Tc is the rate at which the robot starts to fall
when there is no movement in the actuated joint. It is a physical property of the robot and
varies depending on its structure and configuration. It can be measured by manually holding
the robot very close to its balanced configuration, then letting the robot fall while logging its
angle with respect to the vertical, q1. The following step consists in fitting using the least
squares algorithm the logged data to the curve

q1 = A+Be−t/Tc +C et/Tc (A.2)

A.3 Angular Velocity Gain 145

where A, B, C and Tc are all unknown parameters. A accounts for a possible error in the
vertical direction, and B and C depend on the initial conditions. As this approach depends on
a small-angle approximation, the robot can fall up to q1 = 0.1 before discarding the remaining
data. The data are obtained via IMU measurements. The experiment has been performed
four times, and the average value of the time constant of toppling is Tc = 0.182±0.005s.

A.3 Angular Velocity Gain

This section presents the procedure used to estimate the Angular Velocity Gain Gω experi-
mentally. Gω provides a quantitative measure of a robot’s physical ability to balance. It is
defined as the ratio of the change in the robot’s angle with respect to the vertical, q̇1 (measured
with the IMU’s gyroscope), to the change in velocity of the joint used to balance the robot,
q̇2 (q2 is measured with the absolute position encoder and then numerically differentiated to
get q̇2), when both changes are caused by an impulse at that joint. The procedure consists
in placing the robot in a configuration very close to balance (e.g. just 1 mm on the side of
perfect balance) and manually holding it in that position. Then a short high-voltage pulse is
sent to the crossbar motor in a direction that will make the robot reach the balanced position.
After the experiment, the velocity ratio between the vertical q̇1 and the crossbar joint q̇2 is
calculated. The experiment has been performed four times and the average of estimated
velocity gain following this procedure is Gω =−0.068±0.004.

Appendix B

Skippy’s Kinematics

This appendix presents the code used to perform Skippy’s kinematic calculations in 2D. The
Matlab function hopper6gq, described below, performs its calculations according to the old
kinematic model as appears in Chapter 7, not the new one that appears in this appendix.

The content of this appendix is part of the outcome of the Skippy team research. More
specifically, I used the already developed Matlab functions (which rely on the 4-bar mech-
anism kinematic model) to control the robot in simulation. Then, I converted them into C
code and used them to control the real robot.

B.1 4-bar Linkage Kinematics

This section describes how to find the input/output relationship of the Skippy’s 4-bar mech-
anism shown in Figure B.1. The input is the angle B and the output is E +F + π , with
E +F −π varying in the range ±π/2 and the gear ratio from input to output approximately
equals to 2.

The diagram in Figure B.1 can be described by the equations below.

a = bcos(B)+ ecos(E)

a = d cos(A)+ f cos(G)

b = acos(B)+ ecos(F −C)

b = ccos(C)+ f cos(G−B)

c = bcos(C)+ f cos(H)

c = d cos(D)+ ecos(F)

a2 = b2 + e2 −2becos(F −C)

a2 = d2 + f 2 −2d f cos(H −D)

b2 = a2 + e2 −2aecos(E)

b2 = c2 + f 2 −2c f cos(H)

c2 = b2 + f 2 −2b f cos(G−B)

c2 = d2 + e2 −2decos(E −A)

B.1 4-bar Linkage Kinematics 147

Figure B.1 Kinematic diagram of Skippy’s 4-bar mechanism shown in Figure B.2. P0 and
P3 are fixed in the torso, and P1 and P4 are fixed in the leg. P0-P1 is the lower part of the
lever, and P3-P4 is the follower. a, b, c and d corresponds to the parameters bar4_a, bar4_b,
bar4_c and bar4_d respectively.

d = acos(A)+ f cos(H −D)

d = ccos(D)+ ecos(E −A)

e = ccos(F)+d cos(E −A)

e = acos(E)+bcos(F −C)

f = acos(G)+d cos(H −D)

f = ccos(H)+bcos(G−B)

d2 = a2 + f 2 −2a f cos(G)

d2 = c2 + e2 −2cecos(F)

e2 = a2 +b2 −2abcos(B)

e2 = c2 +d2 −2cd cos(D)

f 2 = a2 +d2 −2ad cos(A)

f 2 = b2 + c2 −2bccos(C)

sin(A)/ f = sin(G)/d = sin(H −D)/a

sin(B)/e = sin(E)/b = sin(F −C)/a

sin(C)/ f = sin(H)/b = sin(G−B)/c

sin(D)/e = sin(F)/d = sin(E −A)/c

A+B =C+D

B.1.1 Forward Kinematics

The forward kinematics is performed in three steps

B.2 Matlab Functions 148

1. Solve for e using e2 = a2 +b2 −2abcos(B).

2. Solve for E using either cos(E) = (a−bcos(B))/e or cos(E) = (a2 + e2 −b2)/(2ae).

3. Solve for F using cos(F) = (c2 + e2 −d2)/(2ce).

B.1.2 Inverse Kinematics

The inverse kinematics is not used in this thesis. Nevertheless, the more efficient way to
obtain the inverse kinematics is through numerical approximation (i.e. using a least-squares
polynomial fit as calculated by the Matlab function polyfit).

B.1.3 Velocity Kinematics

The equations below are used to calculate the velocity kinematics of the 4-bar mechanism.

d
dt
(e2 = a2 +b2 −2abcos(B))⇒ 2eė = 2absin(B)Ḃ ⇒ ė =

ab
e

sin(B)Ḃ

d
dt
(ecos(E) = a−bcos(B))⇒ ėcos(E)− esin(E)Ė = bsin(B)Ḃ ⇒

⇒ Ė =
ėcos(E)−bsin(B)(̇B)

esin(E)
=

ėcos(E)− eė/a
esin(E)

= (
acos(E)− e

asin(e)
)
ė
e

d
dt
(2cecos(F) = c2 + e2 −d2)⇒ 2cėcos(F)−2cesin(F)(̇F) = 2eė ⇒

⇒ Ḟ =
cecos(F)− eė

cesin(F)
= (

ccos(F)− e
csin(F)

)
ė
e

and combining them together we get

Ė + Ḟ = (
acos(E)− e

asin(E)
+

ccos(F)− e
csin(F)

)
ė
e
= (

acos(E)− e
asin(E)

+
ccos(F)− e

csin(F)
)
ab
e2 sin(B)Ḃ

B.2 Matlab Functions

Matlab functions used to calculate Skippy’s kinematics.

function [qn,qdn ,G,gs] = hopper6gq(robot , qo, qdo)
% hopper6gq gamma_q function for hopper6
% [qn ,qdn ,G,gs]= hopper6gq(robot ,qo ,qdo) calculates the
% kinematic constraint data for hopper6 in the format
% expected of a spatial_v2 gamma_q function.
% (See spatial_v2 documentation .) qn and qdn are joint

B.2 Matlab Functions 149

% position and velocity vectors that satisfy the kinematic
% constraints exactly , and are calculated from the
% independent variables in qo and qdo , which are elements
% 1, 2, 4, 5 and 10. G is the 10x5 Jacobian that maps
% the vector of independent velocities to the full
% velocity vector , as in qd=G*yd, where
% yd=qd([1,2,4,5,10]); and gs contains both the velocity
% product terms and the Baumgarte stabilization terms
% for use in the acceleration calculation formula
% qdd=G*ydd+gs. See separate documentation for an
% explanation of the kinematics calculations.

qn = qo;
qdn = qdo;
G = zeros (10,5);
g = zeros (10,1);

% Independent Variables
G(1,1) = 1;
G(2,2) = 1;
G(4,3) = 1;
G(5,4) = 1;
G(10,5) = 1;

% Rolling Contact at Ground
qn(3) = qn(4) * -robot.kine.rtoe;
qdn (3) = qdn(4) * -robot.kine.rtoe;
G(3,3) = -robot.kine.rtoe;

% First Triangle (rocker , lever , torso)
a = robot.kine.d56 - qn(10);
b = robot.kine.d05;
c = robot.kine.d06;
[ABC ,G1,g1] = R3Pkin([], a, b, c, -qdn (10));
qn(7) = -ABC(1) + pi/2 - robot.kine.a6 + robot.kine.a5 -

robot.kine.a3;
qn(9) = -ABC(2) + robot.kine.a6;
G(7,5) = G1(1);
G(9,5) = G1(2);
qdn (7) = G(7,5) * qdn (10);
qdn (9) = G(9,5) * qdn (10);
g(7) = -g1(1);
g(9) = -g1(2);

B.2 Matlab Functions 150

% Second and Third Triangles (hip 4-bar linkage)
a = robot.kine.d03;
b = robot.kine.d01;
c = robot.kine.d14;
d = robot.kine.d34;
B = pi/2 - qn(7);
Bd = -qdn(7);
[eFmCE ,G2 ,g2] = R3Pkin(B,[],a,b,Bd); % eFmCE =[e;F-C;E]
e = eFmCE (1);
ed = G2(1) * Bd;
[DEmAF ,G3 ,g3] = R3Pkin ([],e,c,d,ed); % DEmAF =[D;E-A;F]
C = DEmAF (3) - eFmCE (2);
A = eFmCE (3) - DEmAF (2);
qn(6) = C - pi/2 + robot.kine.a3 + robot.kine.a4;
qn(8) = pi/2 - A;
Cd = G3(3)*ed - G2(2)*Bd;
Ad = G2(3)*Bd - G3(2)*ed;
qdn (6) = Cd;
qdn (8) = -Ad;
G(6,5) = (G3(3)*G2(1) - G2(2)) * -G(7,5);
G(8,5) = (G3(2)*G2(1) - G2(3)) * -G(7,5);
g(6) = (G3(3)*G2(1)-G2(2))*-g(7)+G3(3)*g2(1)+g3(3)-g2(2);
g(8) = (G3(2)*G2(1)-G2(3))*-g(7)+G3(2)*g2(1)+g3(2)-g2(3);

% Stabilization terms
Tstab = 0.02;
gs = g + (qdn -qdo)*2/ Tstab + (qn-qo)/Tstab ^2;
end

function [oBC ,G,g] = R3Pkin(A, a, b, c, vel)
% R3Pkin pos/vel/accn kinematics of a triangular RRRP
% mechanism. This function calculates the position ,
% velocity and acceleration kinematics of a triangular
% RRRP mechanism with revolute joints at the corners
% of a triangle ABC , having sides a (=BC), b (=CA) and
% c (=AB), and a prismatic joint on side a. In effect ,
% this is the kinematics of a triangle with two constant
% and one variable side. Two calls are possible , depending
% on whether A or a is the input variable:
% [aBC ,G,g] = R3Pkin(A,[],b,c,Ad) in: A, out: a, B, C
% [ABC ,G,g] = R3Pkin ([],a,b,c,ad) in: a, out: A, B, C
% where A, B and C are interior angles; a, b and c are
% lengths; aBC=[a;B;C], ABC=[A;B;C], and Ad and ad are the

B.2 Matlab Functions 151

% time derivatives of A and a. G is a 3x1 Jacobian matrix
% and g is a 3x1 bias vector. G and g are calculated only
% if requested by the caller (i.e., nargout ==2 or 3). Ad
% and ad are optional , and are needed only to calculate g.
%
% Case 1: A-->a,B,C
% Argument A may take any value , but b and c must be
% non -negative and b+c must be positive. Return value a
% is strictly positive , and B and C are in the range
% -pi...pi and have the same sign as sin(A). G maps Ad
% to aBCd (=d(aBC)/dt) in the velocity equation aBCd=G*Ad;
% and g contains the velocity terms in the acceleration
% equation aBCdd=G*Add+g. Accuracy decreases as a
% approaches zero; and the function generates an error
% if a==0, which happens if b==c and cos(A)==1.
%
% Case 2: a-->A,B,C
% Arguments a, b and c must all be strictly positive and
% must satisfy the triangle inequality. Return values
% A, B and C are in the range 0...pi. G maps ad to
% ABCd (=d(ABC)/dt) in the velocity equation ABCd=G*ad;
% and g contains the velocity terms in the acceleration
% equation ABCdd=G*add+g. Accuracy decreases as the
% triangle approaches degeneracy.

if (length(a)==0) == (length(A)==0)
error('exactly one of arguments A and a must be empty');

end
if nargout > 2 && nargin < 5

error('velocity argument required if return value g
requested ');

end
if length(a)==0 % Case 1: A-->a,B,C

cosA = cos(A);
sinA = sin(A);

if b < 0 || c < 0 || b+c <= 0 || b == c && cosA == 1
error('case A-->a,B,C requires b,c>=0, b+c>0 and if b

==c then cos(A)<1');
end
a2 = b^2 + c^2 -2*b*c*cosA;
a = sqrt(a2);
B = atan2(b*sinA , c-b*cosA);

B.3 Kinematic Diagram 152

C = atan2(c*sinA , b-c*cosA);

oBC = [a;B;C];

if nargout > 1 % calculate G
Ga = b*c * sinA/a;
GB = (c^2 - b^2 - a2) / (2*a2);
G = [Ga;GB;-1-GB];

end
if nargout > 2 % calculate g (needs Ad)

Ad2 = vel ^2;
ga = Ad2 * (b*c*cosA - Ga^2) / a;
gB = Ad2 * Ga * (b^2-c^2) / (a*a2);
g = [ga;gB;-gB];

end
else % Case 2: a-->A,B,C

if a <= 0 || b <= 0 || c <= 0 || a >= b+c || a <= abs(b
-c)
error('case a-->A,B,C requires a,b,c>0, a<b+c and a>|

b-c|');
end

cosA = (b^2 + c^2 - a^2) / (2*b*c);
cosB = (c^2 + a^2 - b^2) / (2*c*a);
cosC = (a^2 + b^2 - c^2) / (2*a*b);

oBC = acos([cosA;cosB;cosC]);

if nargout > 1 % calculate G
sinA = sin(oBC (1));
GA = a / (b*c*sinA);
GB = -cosC / (c*sinA);
G = [GA;GB;-GA-GB];

end
if nargout > 2 % calculate g (needs ad)

ad2 = vel ^2;
sinB = sinA * (b/a);
gA = ad2 * (1/(b*c) - cosA*GA^2) / sinA;
gB = ad2 * ((b^2-c^2)/(c*a^3) - cosB*GB^2) / sinB;
g = [gA;gB;-gA-gB];

end
end
end

B.3 Kinematic Diagram 153

Figure B.2 New kinematic diagram of Skippy in its open-loop zero position (i.e. q1, ...q10 =
0). Diagram created by R. Featherstone and copied with permission. In this diagram (referred
to as ‘new model’), the follower and the lower part of the lever are shown at right angles to
the horizontal part of the torso. In contrast, in the old diagram of Figure 7.12 (referred to as

B.3 Kinematic Diagram 154

‘old model’), they are shown at right angles to the tilted portion of the torso. This discrepancy
affects the definitions of q6, q7 and q8, but not q67. There are also differences in the positions
of some of the body coordinate frames: in the new model, F4 is at P2, F5 is at P1, and F6 is
at P0. In this thesis, all the kinematic calculations are done with the old model.

	Table of contents
	List of figures
	List of tables
	Acronyms
	List of Publications
	1 Introduction
	1.1 Motivation
	1.2 Objectives and Contributions
	1.3 Thesis Overview

	2 Background
	2.1 Underactuated Robots
	2.1.1 Balancing Robots
	2.1.2 Hopping Robots
	2.1.3 Skippy's Design Novelty

	2.2 Onboard Sensors
	2.2.1 Inertial Measurement Unit
	2.2.2 Sensor's Testing Novelty

	2.3 Balance Controllers
	2.3.1 Dynamic Balancing
	2.3.2 Skippy's Controller Novelty

	2.4 Thesis Contributions

	3 Sensors Testing
	3.1 Encoders Testing
	3.1.1 Experimental Setup
	3.1.2 Data Acquisition System
	3.1.3 Experimental and Analysis procedure
	3.1.4 Conclusions

	3.2 IMU Testing
	3.2.1 Experimental Setup
	3.2.2 Data Acquisition System
	3.2.3 Results
	3.2.4 Discussion
	3.2.5 Conclusions

	3.3 General Comments and Limitations

	4 Reaction Wheel Pendulum
	4.1 General Balance Control Theory
	4.2 RWP Special Case
	4.3 Balance Offset Observer
	4.4 Experimental Setup
	4.4.1 Actuation System
	4.4.2 Reaction Wheel
	4.4.3 Sensors
	4.4.4 Control Unit: The Brain

	4.5 Experimental Results
	4.5.1 Tracking Performance

	4.6 Conclusion

	5 General Inverted Double Pendulum
	5.1 Experimental Setup
	5.2 Control System
	5.3 Experimental Results
	5.4 Conclusion

	6 Balancing on a Rolling Contact
	6.1 Balancing on a Horizontal Surface
	6.1.1 Robot Model
	6.1.2 Tracking Error
	6.1.3 New Balance Controller
	6.1.4 Simulation Experiments
	6.1.5 Linear Velocity Gain
	6.1.6 Physical Experiment
	6.1.7 Balancing on a Wheel

	6.2 Balancing on a Slope
	6.2.1 Model Description
	6.2.2 Tracking Error
	6.2.3 Rolling Slope Controller
	6.2.4 Simulation Experiments

	6.3 Conclusion

	7 Balancing and Hopping on a Springy Leg
	7.1 The Robot
	7.1.1 Foot
	7.1.2 Leg
	7.1.3 4-bar Mechanism
	7.1.4 Torso
	7.1.5 Crossbar
	7.1.6 Rocker
	7.1.7 Nut
	7.1.8 Actuation System
	7.1.9 Sensors
	7.1.10 Skippy's Springs

	7.2 Kinematic Model
	7.2.1 Model Mapping

	7.3 Centre of Mass Observer
	7.4 Experiment
	7.5 Conclusion

	8 Conclusion
	References
	Appendix A RWP Dynamic Parameters Estimation
	A.1 First Moment of Mass
	A.2 Time Constant of Toppling
	A.3 Angular Velocity Gain

	Appendix B Skippy's Kinematics
	B.1 4-bar Linkage Kinematics
	B.1.1 Forward Kinematics
	B.1.2 Inverse Kinematics
	B.1.3 Velocity Kinematics

	B.2 Matlab Functions
	B.3 Kinematic Diagram

